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THE HUBBARD MODEL

The Hubbard model is an approximate description of interacting
electrons in a solid;
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* One of the simplest models capturing the physics of many-body
electron interactions &
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THE HUBBARD MODEL

The Hubbard model is an approximate description of interacting
electrons in a solid;

N P2 N
H = 2 (S + Vo) + Z V.(i, )
l i<j

* One of the simplest models capturing the physics of many-body
electron interactions &

* Requires exponentially increasing computational resources with
system size to solve @
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THE HUBBARD MODEL

The Hubbard model is an approximate description of interacting
electrons in a solid;

N P2 N
H= Z (S + Vo) + Z V,(i, )
l i<j

* One of the simplest models capturing the physics of many-body
electron interactions &

* Requires exponentially increasing computational resources with
system size to solve @

Can adiabatic quantum computing help us circumvent this
problem?
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THE HUBBARD HAMILTONIAN
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[, = lattice size

o = spin index
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[. = lattice size

THE HUBBARD HAMILTONIAN .= spinindex
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[. = lattice size

GROUND-STATE n, = number operator

for spin o

« Exact results only exist for the 1D Hubbard model and numerical
calculation of the ground state is exponentially expensive.

* |Is there a strategy for quantum annealing that can do better?
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[. = lattice size

GROUND-STATE n, = number operator

for spin o

« Exact results only exist for the 1D Hubbard model and numerical
calculation of the ground state is exponentially expensive.

* |Is there a strategy for quantum annealing that can do better?

Strategy of adiabatically evolving from a tight binding Hamiltonian to a
Hubbard Hamiltonian:

L L
H(s) =—1 Z (C;;Cja + cJ?;cl-o_) + su Z N
(i.j).0 i

adiabatic

L
HO)=—1 ) (clc,+ cicip) 5 H(1) = Hy
(irj)o
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[. = lattice size

ADIABATIC EVOLUTION [ic = number operator

for spin o

The adiabatic theorem hints us that:

L2 L
T, < [ 1] ds where H = uz N
0 A(S)3 : l l
« scaling of A(s) with system size — scaling of T, required for achieving
the ground state

* If A(s) scales O(L™") - T, scales O(L9)

Since for all s, we have:
H(s #0) = Hy(u = su)
we look at the behaviour of min(A(s)) to infer the scaling behaviour of 7,

Reference —
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[. = lattice size

H OW? Nis = number operator

for spin o

We want to find the ground-state of the half-filled Hubbard Hamiltonian
for various values of S,

L L
Y (my+m)=L and [) (n;—m).Hs)] =0

Lanczos algorithm — lower-lying eigenspectrum of H(s)

Suzuki-Trotter product formula — simulation of time evolution
By doing a diabatic evolution, we can identify the relevant excited states

|y,(5)) where;
W) [ UGT) ly(s =0)) #0  forn >0
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[. = lattice size

HOW? n,; = number operator

energy
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[. = lattice size

HOW? n,; = number operator

for spin o
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[ = lattice size
MINIMUM GAP n.. = number operator
for spin o

We are now in a position to determine minimum gap for the problems of
our interest;
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[ = lattice size
MINIMUM GAP n.. = number operator
for spin o

We are now in a position to determine minimum gap for the problems of
our interest;

L
1. Calculate E, () for each problem with a given value of L and Z n;

l

2. Using diabatic excitations, determine which eigenstates are relevant
for the given E ()

3. Find min(A(s)) between Ey(s) and E,(s)
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minimum gap

[. = lattice size

M I N I M U M GAP n.. = number operator

for spin o

L odd T —— fit slope = -2.102623
L even

fit with slope = -1.941710
fit with slope = -1.956494
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minimum gap

[. = lattice size

M I N I M U M GAP n.. = number operator
L

for spin o

min(A(s)) vs L for fixed Z n;, to check for any scaling behaviour

l

—o— L odd

—o— Leven

—— fit with slope =-1.941710
—— fit with slope = -1.956494
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1~ —— fit slope = -2.102623

6 x 10° 10! 2 x 10! 3 x 10!
L

2 n; = 2.d — O(L%

IJ JULICH

Forschungszentrum



minimum gap

[. = lattice size

M I N I M U M GAP n.. = number operator

——— fit slope = -2.110439
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minimum gap

for spin o

—— fit slope = -1.969321
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[
(=)
(=]

minimum gap

MINIMUM GAP
L

L = lattice size
n.. = number operator
for spin o

min(A(s)) vs L for fixed Z n;, to check for any scaling behaviour

l
—— fit slope = -2.110439 —— fit slope = -1.969321
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[. = lattice size

M I N I M U M GAP n.. = number operator

—— fit slope = -1.027387
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minimum gap

[. = lattice size

M I N I M U M GAP n.. = number operator
L

for spin o

min(A(s)) vs L for fixed 2 n;, to check for any scaling behaviour

l
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[. = lattice size

LADDER GEOMETRY n, = number operator

for spin o

Since the Hubbard model on a ladder is not exactly solved, we also tried
to see if there is a similar behaviour for it
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[. = lattice size

MlNIMU M GAP(LADDER) n;, = number operator

for spin o

= —— fit slope = -2.066844
—e— Lo
—0— L even
—— fit with slope = -1.906018
—— fit with slope = -1.898659
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[. = lattice size

MINIMUM GAP(LADDER) |z, = number operator
L

for spin o

min(A(s)) vs L for fixed Z n;, to check for any scaling behaviour

l
—— fit slope = -2.066844
—e— L odd
—0— L even
—— fit with slope = -1.906018
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[. = lattice size

WHAT CAN WE SAY’) n;, = number operator

for spin o

1 L
min(A(s)) ~ IR for fixed Z n;,?

« If this trend holds for large values of Z n;, it might mean that the

ground-state of the Hubbard model can be achievable in polynomial
time

» This encourages us to look further into the utility of adiabatic quantum
computation for solving the Hubbard model

* The next step would be to do gate based simulations of quantum
annealing to explore further
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JUQCS

Julich Quantum Computer Simulator

« High-performance program for simulating all kinds of gate based
circuits
« Can simulate circuits for upto 42 qubits

Idea?
1. Study the quantum annealing behaviour for a system as large as
possible
2. Look at the feasibility from a gate-based perspective

Initial steps?
1. Determine circuit for preparing initial state
2. Prepare circuit for Suzuki-Trotter steps of adiabatic time evolution
3. Prepare measurement procedure
4. Bring it all together
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N = no. particles

INITIAL STATE PREPARATION 7 ~ number of

givens rotations

([ +) ()
ch...cl'|0) — ¢...cl|0) ¢/ c
h Iy kl kN
‘ g ) k _ ) . — Q .
easy-to-prepare Initial ground-state \Cijv ) \Csz )

ltturnsout; Q = GG,...G

m

where G(0) = <cos(«9) —sin(6’)>

sin(d) cos(0)

Givens rotations on neighbouring rows!

If two neighbouring spin orbitals are considered;

T ] q[@
()= P ®

]+1

Reference —
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INITIAL STATE PREPARATION

Given (), the sequence of givens rotations can be calculated in an
efficient way as shown in the reference;

L L L L Q = transformation
D YLD YR UD Yt o
_ i . H : A _ 1 [ = lattice size
: 5 : H = | l l m = number of
epth = L — givens rotations

%0 o mm’e. o
?ﬁ?? &??ﬁ?

ql4]

L
Circuit for preparing the initial ground state for L = 5, Z n = 2
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TIME-EVOLUTION ON A QUANTUM COMPUTER

(1 00 0 ) 1 0 0 0)
—ITUN: - O 1 O O —iTl‘(C-T C. +C-T C. ) O COS(th) (_ l)xSIH(th) O
é it = e ic“jo T %jo%ic/ —
O 01 O 0 (=1)*sin(itt) cos(itt) 0
0 0 0 '™ 0 0 L0 1
i
X = Z 1
s=i+1

Suzuki-Trotter steps — building blocks of time evolution
Various ways of constructing appropriate circuits

Depth increases due to parity in hopping term

Depth of Suzuki-Trotter step — O(L)
Can be reduced
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[. = lattice size

SUMMARY T, = annealing time

* Circuits for state preparation and time-evolution steps have depth

O(L)

o If T, ~ O(L?) can be established for the Hubbard model, then it is an

indication of quantum adiabatic computing to be a natural platform for
solving such models

 This bolsters our hope towards the promise of quantum computers and
encourages us to try harder to establish its advantages

THANK YOU VERY MUCH!
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