

INVESTIGATING SCALING PROPERTIES FOR QUANTUM ANNEALING TO SOLVE THE FERMI-HUBBARD MODEL USING THE KINETIC ENERGY PART AS THE DRIVING HAMILTONIAN

10/06/2024 I KUNAL VYAS, FENGPING JIN, KRISTEL MICHIELSEN

The Hubbard model is an approximate description of interacting electrons in a solid;

$$H = \sum_{i}^{N} \left(\frac{P_i^2}{2m} + V_p(i) \right) + \sum_{i < j}^{N} V_c(i, j)$$

The Hubbard model is an approximate description of interacting electrons in a solid;

$$H = \sum_{i}^{N} \left(\frac{P_i^2}{2m} + V_p(i) \right) + \sum_{i < j}^{N} V_c(i, j)$$

 One of the simplest models capturing the physics of many-body electron interactions

The Hubbard model is an approximate description of interacting electrons in a solid;

$$H = \sum_{i}^{N} \left(\frac{P_i^2}{2m} + V_p(i) \right) + \sum_{i < j}^{N} V_c(i, j)$$

- One of the simplest models capturing the physics of many-body electron interactions
- Requires exponentially increasing computational resources with system size to solve

The Hubbard model is an approximate description of interacting electrons in a solid;

$$H = \sum_{i}^{N} \left(\frac{P_i^2}{2m} + V_p(i) \right) + \sum_{i < j}^{N} V_c(i, j)$$

- One of the simplest models capturing the physics of many-body electron interactions
- Requires exponentially increasing computational resources with system size to solve

Can adiabatic quantum computing help us circumvent this problem?

L = lattice size $\sigma = \text{ spin index}$

THE HUBBARD HAMILTONIAN

$$H_{H} = -t \sum_{\langle i,j \rangle, \sigma}^{L} c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} + u \sum_{i}^{L} n_{i\uparrow} n_{i\downarrow}$$

THE HUBBARD HAMILTONIAN

$$H_{H} = -t \sum_{\langle i,j \rangle,\sigma}^{L} c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} + u \sum_{i}^{L} n_{i\uparrow} n_{i\downarrow}$$

$$c_{i} | \dots \underline{1} \dots \rangle = (-1)^{x} | \dots \underline{0} \dots \rangle$$

$$i \qquad i \qquad x = \sum_{j=1}^{i-1} f_{j}$$

$$c_{i}^{\dagger} | \dots \underline{0} \dots \rangle = (-1)^{x} | \dots \underline{1} \dots \rangle$$

$$i \qquad i$$

$$n_{i\sigma} = c_{i\sigma}^{\dagger} c_{i\sigma}$$

GROUND-STATE

- Exact results only exist for the 1D Hubbard model and numerical calculation of the ground state is exponentially expensive.
- Is there a strategy for quantum annealing that can do better?

GROUND-STATE

L= lattice size $n_{i\sigma}=$ number operator for spin σ

- Exact results only exist for the 1D Hubbard model and numerical calculation of the ground state is exponentially expensive.
- Is there a strategy for quantum annealing that can do better?

Strategy of adiabatically evolving from a tight binding Hamiltonian to a Hubbard Hamiltonian:

$$H(s) = -t \sum_{\langle i,j \rangle,\sigma}^{L} (c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma}) + su \sum_{i}^{L} n_{i\uparrow} n_{i\downarrow}$$

$$H(0) = -t \sum_{\langle i,j\rangle,\sigma}^{L} (c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma}) \xrightarrow{adiabatic} H(1) = H_{H}$$

ADIABATIC EVOLUTION

L= lattice size $n_{i\sigma}=$ number operator for spin σ

The adiabatic theorem hints us that:

$$T_A < \int_0^1 \frac{\|\dot{H}\|^2}{\Delta(s)^3} ds$$
 where $\dot{H} = u \sum_i^L n_{i\uparrow} n_{i\downarrow}$

- scaling of $\Delta(s)$ with system size \rightarrow scaling of T_A required for achieving the ground state
- If $\Delta(s)$ scales $O(L^{-p}) \to T_A$ scales $O(L^q)$

Since for all s, we have:

$$H(s \neq 0) = H_H(u = su)$$

we look at the behaviour of $min(\Delta(s))$ to infer the scaling behaviour of T_A

Reference →

HOW?

L= lattice size $n_{i\sigma}=$ number operator for spin σ

We want to find the ground-state of the half-filled Hubbard Hamiltonian for various values of S_{z} ;

$$\sum_{i}^{L} (n_{i\uparrow} + n_{i\downarrow}) = L \quad \text{and} \quad \left[\sum_{i}^{L} (n_{i\uparrow} - n_{i\downarrow}), H(s)\right] = 0$$

Lanczos algorithm \rightarrow lower-lying eigenspectrum of H(s)

Suzuki-Trotter product formula \rightarrow simulation of time evolution By doing a diabatic evolution, we can identify the relevant excited states $|\psi_n(s)\rangle$ where;

$$\langle \psi_n(s) | U_t(sT_A) | \psi_0(s=0) \rangle \neq 0$$
 for $n > 0$

HOW?

$$L=9, \sum n_{i\downarrow}=2$$

$$E_n(s)$$

$$|\langle \psi_n(s) | U_t(sT_A) | \psi_0(s=0) \rangle|^2$$

HOW?

$$L=9, \sum n_{i\downarrow}=2$$

$$E_n(s)$$

$$|\langle \psi_n(s) | U_t(sT_A) | \psi_0(s=0) \rangle|^2$$

L= lattice size $n_{i\sigma}=$ number operator for spin σ

We are now in a position to determine minimum gap for the problems of our interest;

L= lattice size $n_{i\sigma}=$ number operator for spin σ

We are now in a position to determine minimum gap for the problems of our interest;

- 1. Calculate $E_n(s)$ for each problem with a given value of L and $\sum_i n_{i\downarrow}$
- 2. Using diabatic excitations, determine which eigenstates are relevant for the given $E_n(s)$
- 3. Find $min(\Delta(s))$ between $E_0(s)$ and $E_1(s)$

L = lattice size $n_{i\sigma} = \text{number operator}$ for spin σ

 $min(\Delta(s))$ vs L for fixed $\sum_{i\downarrow} n_{i\downarrow}$ to check for any scaling behaviour

$$\sum n_{i\downarrow} = 1, d \to O(L^2)$$

$$\sum n_{i\downarrow} = 3, d \to O(L^6)$$

$$\sum n_{i\downarrow} = 4, d \to O(L^8)$$

L = lattice size $n_{i\sigma} = \text{number operator}$ for spin σ

 $min(\Delta(s))$ vs L for fixed $\sum_{i}^{\infty} n_{i\downarrow}$ to check for any scaling behaviour

$$\sum n_{i\downarrow} = 3, d \to O(L^6)$$

$$\sum n_{i\downarrow} = 4, d \to O(L^8)$$

$$\sum n_{i\downarrow} = L/2, d \to O(4^n)$$

L = lattice size $n_{i\sigma} = \text{number operator}$ for spin σ

 $min(\Delta(s))$ vs L for fixed $\sum_{i\downarrow} n_{i\downarrow}$ to check for any scaling behaviour

$$\sum n_{i\downarrow} = L/2, d \to O(4^n)$$

LADDER GEOMETRY

L= lattice size $n_{i\sigma}=$ number operator for spin σ

Since the Hubbard model on a ladder is not exactly solved, we also tried to see if there is a similar behaviour for it

$$H_{H} = -t \sum_{\langle i,j \rangle, \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} + u \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

MINIMUM GAP(LADDER)

$$\sum n_{i\downarrow} = 1, d \to O(L^2)$$

MINIMUM GAP(LADDER)

L = lattice size $|n_{i\sigma}| = \text{number operator}$ for spin σ

 $min(\Delta(s))$ vs L for fixed $\sum_{i\downarrow}^{L} n_{i\downarrow}$ to check for any scaling behaviour

$$\sum n_{i\downarrow}=1, d\to O(L^2)$$

WHAT CAN WE SAY?

$$min(\Delta(s)) \sim \frac{1}{L^2}$$
 for fixed $\sum_{i}^{L} n_{i\downarrow}$?

- If this trend holds for large values of $\sum n_{i\downarrow}$, it might mean that the ground-state of the Hubbard model can be achievable in polynomial time
- This encourages us to look further into the utility of adiabatic quantum computation for solving the Hubbard model
- The next step would be to do gate based simulations of quantum annealing to explore further

JUQCS

Jülich Quantum Computer Simulator

- High-performance program for simulating all kinds of gate based circuits
- Can simulate circuits for upto 42 qubits

Idea?

- 1. Study the quantum annealing behaviour for a system as large as possible
- 2. Look at the feasibility from a gate-based perspective

Initial steps?

- 1. Determine circuit for preparing initial state
- 2. Prepare circuit for Suzuki-Trotter steps of adiabatic time evolution
- 3. Prepare measurement procedure
- 4. Bring it all together

INITIAL STATE PREPARATION m = number of givens rotations

N = no. particles

$$\underbrace{c_{i_1}^\dagger \dots c_{i_N}^\dagger | \, 0}_{\text{easy-to-prepare}} \rightarrow \underbrace{c_{k_1}^\dagger \dots c_{k_N}^\dagger | \, 0}_{\text{initial ground-state}}$$

$$\begin{pmatrix} c_{i_1}^{\dagger} \\ \cdot \\ c_{i_N}^{\dagger} \end{pmatrix} = Q \begin{pmatrix} c_{k_1}^{\dagger} \\ \cdot \\ c_{k_N}^{\dagger} \end{pmatrix}$$

It turns out;
$$Q = G_1 G_2 \dots G_m$$
 where $G(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$

Givens rotations on neighbouring rows!

If two neighbouring spin orbitals are considered;

$$G(\frac{\pi}{2})\begin{pmatrix} c_j^{\dagger} \\ c_{j+1}^{\dagger} \end{pmatrix} \rightarrow q[0] \xrightarrow{\text{RY}} q[1]$$

Reference →

INITIAL STATE PREPARATION

Given Q, the sequence of givens rotations can be calculated in an efficient way as shown in the reference;

$$m = (L - \sum_{i}^{L} n_{i\downarrow}) \sum_{i}^{L} n_{i\downarrow} + (L - \sum_{i}^{L} n_{i\uparrow}) \sum_{i}^{L} n_{i\uparrow}$$

$$\text{Depth} = L - 1$$

Q = transformationmatrix L = lattice size m = number ofgivens rotations

Circuit for preparing the initial ground state for $L=5, \sum_{i=1}^{L} n_{i\downarrow}=2$

TIME-EVOLUTION ON A QUANTUM COMPUTER

$$e^{-i\tau u n_{i\downarrow} n_{i\uparrow}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{-i\tau u} \end{pmatrix} \qquad e^{-i\tau t (c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma})} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(i\tau t) & (-1)^{x} \sin(i\tau t) & 0 \\ 0 & (-1)^{x} \sin(i\tau t) & \cos(i\tau t) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$x = \sum_{s=i+1}^{j-1} f_{s}$$

Suzuki-Trotter steps → building blocks of time evolution

Various ways of constructing appropriate circuits

Depth increases due to parity in hopping term

Depth of Suzuki-Trotter step $\to O(L)$ Can be reduced

SUMMARY

 $L=\ \ {
m lattice\ size}$ $T_A=\ {
m annealing\ time}$

- Circuits for state preparation and time-evolution steps have depth ${\cal O}(L)$
- If $T_A \sim O(L^2)$ can be established for the Hubbard model, then it is an indication of quantum adiabatic computing to be a natural platform for solving such models
- This bolsters our hope towards the promise of quantum computers and encourages us to try harder to establish its advantages

THANK YOU VERY MUCH!

