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• One of the simplest models capturing the physics of many-body 
electron interactions 😄

• Requires exponentially increasing computational resources with 
system size to solve 😥

Can adiabatic quantum computing help us circumvent this 
problem?
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THE HUBBARD HAMILTONIAN
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GROUND-STATE
• Exact results only exist for the 1D Hubbard model and numerical 

calculation of the ground state is exponentially expensive. 
• Is there a strategy for quantum annealing that can do better?
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GROUND-STATE
• Exact results only exist for the 1D Hubbard model and numerical 

calculation of the ground state is exponentially expensive. 
• Is there a strategy for quantum annealing that can do better?

H(s) = − t
L

∑
⟨i, j⟩,σ

(c†
iσcjσ + c†

jσciσ) + su
L

∑
i

ni↑ni↓

H(0) = − t
L

∑
⟨i, j⟩,σ

(c†
iσcjσ + c†

jσciσ) adiabatic H(1) = HH

Strategy of adiabatically evolving from a tight binding Hamiltonian to a 
Hubbard Hamiltonian:
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ADIABATIC EVOLUTION
The adiabatic theorem hints us that:  

        where  

• scaling of  with system size  scaling of  required for achieving 
the ground state 

• If  scales    scales  

Since for all s, we have: 
 

we look at the behaviour of  to infer the scaling behaviour of 

TA < ∫
1

0

∥ ·H∥2

Δ(s)3
ds ·H = u

L

∑
i

ni↑ni↓

Δ(s) → TA

Δ(s) O(L−p) → TA O(Lq)

H(s ≠ 0) = HH(u = su)
min(Δ(s)) TA

Reference →
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HOW?
We want to find the ground-state of the half-filled Hubbard Hamiltonian 
for various values of ; 

     and     

Lanczos algorithm  lower-lying eigenspectrum of  

Suzuki-Trotter product formula  simulation of time evolution 
By doing a diabatic evolution, we can identify the relevant excited states 

 where; 

           for 

SZ
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MINIMUM GAP

We are now in a position to determine minimum gap for the problems of 
our interest;
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MINIMUM GAP

We are now in a position to determine minimum gap for the problems of 
our interest;

1. Calculate  for each problem with a given value of  and  

2. Using diabatic excitations, determine which eigenstates are relevant 
for the given  

3. Find  between  and 
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MINIMUM GAP

∑ ni↓ = 1,d → O(L2) ∑ ni↓ = 2,d → O(L4)
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∑ ni↓ = 3,d → O(L6) ∑ ni↓ = 4,d → O(L8)
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LADDER GEOMETRY
Since the Hubbard model on a ladder is not exactly solved, we also tried 
to see if there is a similar behaviour for it
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WHAT CAN WE SAY?

 for fixed ? 

• If this trend holds for large values of , it might mean that the 
ground-state of the Hubbard model can be achievable in polynomial 
time 

• This encourages us to look further into the utility of adiabatic quantum 
computation for solving the Hubbard model 

• The next step would be to do gate based simulations of quantum 
annealing to explore further

min(Δ(s)) ∼
1
L2

L

∑
i

ni↓

∑ ni↓
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JUQCS
Jülich Quantum Computer Simulator

• High-performance program for simulating all kinds of gate based 
circuits 

• Can simulate circuits for upto 42 qubits

Idea? 
1. Study the quantum annealing behaviour for a system as large as 

possible 
2. Look at the feasibility from a gate-based perspective

Initial steps? 
1. Determine circuit for preparing initial state 
2. Prepare circuit for Suzuki-Trotter steps of adiabatic time evolution 
3. Prepare measurement procedure 
4. Bring it all together



INITIAL STATE PREPARATION
c†

i1
. . . c†

iN
|0⟩

easy-to-prepare

→ c†
k1

. . . c†
kN

|0⟩

initial ground-state

c†
i1.

c†
iN

= Q
c†

k1.
c†

kN

It turns out;         where  

Givens rotations on neighbouring rows!

Q = G1G2 . . . Gm G(θ) = (cos(θ) −sin(θ)
sin(θ) cos(θ) )

If two neighbouring spin orbitals are considered; 

                                        G(
π
2

)(
c†

j

c†
j+1) →

q[0]

q[1] RY
(pi / 2)

Reference →

 no. particles 
number of 

givens rotations

N =
m =



q[0]

q[1]

q[2]

q[3]

q[4]

RY
(-1.523565)

RY
(-2.317584)

RY
(-pi / 2)

RY
(pi)

RY
(pi)

RY
(pi / 2)

INITIAL STATE PREPARATION

Circuit for preparing the initial ground state for L = 5,
L

∑
i

ni↓ = 2

Given , the sequence of givens rotations can be calculated in an 
efficient way as shown in the reference;

Q

 m = (L −
L

∑
i

ni↓)
L

∑
i

ni↓ + (L −
L

∑
i

ni↑)
L

∑
i

ni↑

Depth = L − 1

transformation 
matrix 

 lattice size 
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TIME-EVOLUTION ON A QUANTUM COMPUTER

e−iτuni↓ni↑ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−iτu

e−iτt(c†
iσcjσ+c†

jσciσ) =

1 0 0 0
0 cos(iτt) (−1)xsin(iτt) 0
0 (−1)xsin(iτt) cos(iτt) 0
0 0 0 1

x =
j−1

∑
s=i+1

fs

Suzuki-Trotter steps  building blocks of time evolution 

Various ways of constructing appropriate circuits 

Depth increases due to parity in hopping term 

Depth of Suzuki-Trotter step   
Can be reduced

→

→ O(L)
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THANK YOU VERY MUCH!

• Circuits for state preparation and time-evolution steps have depth 
 

• If  can be established for the Hubbard model, then it is an 
indication of quantum adiabatic computing to be a natural platform for 
solving such models 

• This bolsters our hope towards the promise of quantum computers and 
encourages us to try harder to establish its advantages

O(L)

TA ∼ O(L2)

SUMMARY
 lattice size 
annealing time

L =
TA =


