001     1033656
005     20250203103355.0
037 _ _ |a FZJ-2024-06528
041 _ _ |a English
100 1 _ |a Neftci, Emre
|0 P:(DE-Juel1)188273
|b 0
|u fzj
111 2 _ |a Artificial Intelligence BioMedical Circuits And Systems For Health
|g Biocas IEEE
|c Toronto
|d 2023-10-19 - 2023-10-21
|w Canada
245 _ _ |a Online Transformers with Spiking Neurons for Fast Prosthetic Hand Control
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1732779931_10399
|2 PUB:(DE-HGF)
|x After Call
500 _ _ |a Also published in 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS), Electronic ISBN:979-8-3503-0026-0Print on Demand(PoD) ISBN:979-8-3503-0027-7
520 _ _ |a Fast and accurate online processing is essential for smooth prosthetic hand control with Surface Electromyography signals (sEMG). Although transformers are state-of-the-art deep learning models in signal processing, the self-attention mechanism at the core of their operations requires accumulating data for large time-windows. They are therefore not suited for online signal processing. In this paper, we use an attention mechanism with sliding windows that allows a transformer to process sequences element-by-element. Moreover, we increase the sparsity of the network using spiking neurons. We test the model on the NinaproDB8 finger position regression dataset. Our model sets its new state-of-the-art in terms of accuracy on NinaproDB8, while requiring only very short time windows of 3.5 ms at each inference step, and reducing the number of synaptic operations up to a factor of ×5.3 thanks to the spiking neurons. Our results hold great promises for wearable online sEMG processing systems for prosthetic hand control.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
700 1 _ |a Finkbeiner, Jan Robert
|0 P:(DE-Juel1)190112
|b 1
|u fzj
700 1 _ |a Leroux, Nathan
|0 P:(DE-Juel1)194421
|b 2
|u fzj
856 4 _ |u https://ieeexplore.ieee.org/document/10388996
856 4 _ |u https://juser.fz-juelich.de/record/1033656/files/Online_Transformers_with_Spiking_Neurons_for_Fast_Prosthetic_Hand_Control.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1033656
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188273
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190112
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)194421
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2024
920 1 _ |0 I:(DE-Juel1)PGI-15-20210701
|k PGI-15
|l Neuromorphic Software Eco System
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-15-20210701
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21