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Parallel-in-Time (“PinT”) approaches
“50 years of parallel-in-time integration”, M. Gander ( CMCS, 2015)

Interpolation-based approach (Nievergelt 1964)
Predictor-corrector approach (Miranker, Liniger 1967)
Parabolic or time multi-grid (Hackbusch 1984)
Multiple shooting in time (Kiehl 1994)
Parallel Runge-Kutta methods (e.g. Butcher 1997)
Parareal (Lions, Maday, Turinici 2001)
PITA (Farhat, Chandesris 2003)
Guided Simulations (Srinavasan, Chandra 2005)
RIDC (Christlieb, Macdonald, Ong 2010)
PFASST (Emmett, Minion 2012)
MGRIT (Falgout et al 2014)
ParaDIAG (Wu et al 2021)
...
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For this talk: the collocation problem

Consider the Picard form of an initial value problem on [T0,T1]

u(t) = u0 +
∫ t

T0

f (u(s))ds,

discretized using spectral quadrature rules with nodes tm:

um = u0 + ∆t
M∑

l=1
qm,l f (ul) ≈ u0 +

∫ tm

T0

f (u(s))ds,

⇒ corresponds to a fully implicit Runge-Kutta method on [T0,T1].

How to solve this system (and more) in parallel?
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Four approaches

Following Kevin Burrage’s terminology:

1 “Parallelization across the method”: computation of the solution at all M stages at once
1 using diagonalization of Q
2 using preconditioned spectral deferred corrections

2 “Parallelization across the steps”: computation of the solution at multiple steps at once
1 using multilevel/multigrid techniques
2 using diagonalization techniques
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Parallelization across the method I
Diagonalization

For suitable choices of the M collocation nodes, Q can be diagonalized, i.e. for linear problems

(I − ∆tQF )(u⃗) = (I − ∆tQ ⊗ A)u⃗ = (VQ ⊗ I)(I − ∆tDQ ⊗ A)(VQ ⊗ I)−1u⃗

with diagonal matrix DQ .

Remarks:
This is a direct solver for linear problems
Extension to nonlinear problems via inexact Newton
Classical approach to deal with fully-implicit RK methods
Beware: DQ has complex entries!
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Parallelization across the method II
Spectral deferred corrections (serial, for now)

standard Picard iteration is Richardson for (I − ∆tQF )(u⃗) = u⃗0, i.e.

u⃗k+1 = u⃗k +
(
u⃗0 − (I − ∆tQF )(u⃗k)

)
preconditioning: use simpler integration rule Q∆ with

(I − ∆tQ∆F )(u⃗k+1) = (I − ∆tQ∆F )(u⃗k) +
(
u⃗0 − (I − ∆tQF )(u⃗k)

)
This corresponds to spectral deferred corrections (SDC)!

if the integration rule Q∆ is implicit/explicit, the whole iteration will be implicit/explicit

can also do IMEX, multi-implicit and (limited) multirate time-stepping, high-order Boris-SDC,
adaptive time-stepping, fault-tolerant integration, ...
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Parallelization across the method II
Parallel SDC, with Ruth Schöbel, Daniel Ruprecht, Thibaut Lunet, Gayatri Caklovic and others

Idea: use diagonal Q∆ to compute updates simultaneously for all collocation nodes

How to find a suitable Q∆?
1 Standard tricks like the diagonal of Q (don’t work well)
2 Minimize ρ(I − Q−1

∆ Q) to tune the iteration for the stiff limit (works well for stiff problems)
3 Use machine/reinforcement learning to find the “optimal” entries of Q∆ for a given problem class

→ New paper by Thibaut et al. has very promising results!
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Parallel SDC for Navier-Stokes equations
IMEX SDC using a projection-based approach

Figure: Left: Flow around the cylinder, DFG95 benchmark. Top:
Number of iterations for different SDC preconditioners at
selected time-steps. Smaller is better, blue is serial reference.
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Parallelization across the method
Summary

Pros
Pretty good parallel efficiency
Simple to implement, simple to use, simple to analyze
Can be easily combined with other parallelization strategies

Cons
Parallelization depends on order of accuracy
Small-scale parallelization only
Nonlinear problems doable, but not straightforward
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Parallelization across the steps I
Multigrid for the composite collocation problem

We now glue L time-steps together, using N to transfer information from step l to step l + 1. We get
the composite collocation problem:

I − ∆tQF
−N I − ∆tQF

. . . . . .
−N I − ∆tQF




u⃗1
u⃗2
...

u⃗L

 =


u⃗0
0
...
0


Parallel Full Approximation Scheme in Space and Time (PFASST, Minion and Emmett, 2012):

use (linear/FAS) multigrid to solve this system iteratively
smoother: parallel block-wise Jacobi with SDC in the blocks
coarse-level solver: serial block-wise Gauß-Seidel with SDC in the blocks
exploit cheapest coarse level to quickly propagate information forward in time
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Coarsening in space and time
Space-time multilevel techniques, with Daniel Ruprecht and Michael Minion

Key to optimal efficiency: ratio between coarse and fine sweep
coarsening strategies:

1 reduction of temporal SDC nodes
2 reduction of degrees-of-freedom in space
3 reduced order in spatial discretization
4 reduced implicit solve (if implicit integrator used)
5 reduced physical representation

precise balancing between aggressive coarsening and additional iterations crucial
application-tailored coarsening in space and time required
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One step further: PFASST-ER
PFASST + parallel SDC, with Ruth Schöbel

Idea: Use parallel SDC sweeps within parallel time-steps
Example: 2D Allen-Cahn, fully-implicit, 256x256 DOFs in space, up to 24 available cores.

1 2 3 6 12 24

Cores for time-steps

1

2

4

C
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re
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fo
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s

88.5

31.1

56.1

38.3

65.9

32.954.8 40.8

44.3

113.0

69.1

54.9

51.1

85.7165.7
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pySDC - Prototyping Spectral Deferred Corrections

Test before you invest at https://parallel-in-time.org/pySDC

→

Member of the Helmholtz Association June 10, 2024 Slide 15

https://parallel-in-time.org/pySDC


Some pySDC features
Tutorials and examples

Ships with a lot of examples
Many SDC flavors up to
PFASST
Problems beyond heat equation

Python

Interface compiled code for
expensive spatial solves
Implementation close to
formulas

Parallel and serial
Serial algorithms
Pseudo-parallel algorithms
Time-parallel algorithms
Space-time parallel algorithms

CI/CD/CT

Well documented
Well tested
Works on my machine anywhere
Reproduce paper results
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Code separated into modules
Problem

implicit Euler like solves
evaluate right hand side
initial conditions, maybe exact solution
use your own datatype

Callbacks: Modify anything at any time

solution
step size
sweeper
...

Sweeper: Timestepping

assembles and calls solves in problem class
administers right hand side evaluations
takes care of Q∆, splitting etc.
DIRK methods available as sweepers

Hooks: Extract anything at any time

Newton / SDC iterations and f evaluations
wall time
error
...
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Parallelization across the step with PFASST
Summary

Pros
Can provide significant speedup over space-parallel codes
Has been demonstrated to run on very large scales
Code base is solid and (a bit) diverse
Designed and works directly for nonlinear problems

Cons
Theory is.. scarce
Usage and implementation is usually a big obstacle (“non-non-intrusive”)
Suitable coarsening strategies are not always easy to define
Does not work well for hyperbolic problems
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Back to the composite collocation problem
Let’s go back to the problem PFASST is solving:

I − ∆tQF
−N I − ∆tQF

. . . . . .
−N I − ∆tQF




u⃗1
u⃗2
...

u⃗L

 =


u⃗0
0
...
0


Compact notation:

(I − (I ⊗ ∆tQ)F − E ⊗ N)(u⃗) = u⃗0

Make it linear (for now):

(I − I ⊗ ∆tQ ⊗ A − E ⊗ N)u⃗ = u⃗0

Even more compactly written: Cu⃗ = u⃗0
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Parallelization through diagonalization
A ParaDIAG variant for the composite collocation problem, with Gayatri Caklovic

Preconditioned iteration:

u⃗k+1 = u⃗k + P−1(u⃗0 − Cu⃗k)

If P−1 can be computed in a parallel way, then we have a PinT integrator.
Idea:

C

α

=


I − ∆tQ ⊗ A

− αN

−N I − ∆tQ ⊗ A
. . . . . .

−N I − ∆tQ ⊗ A


Or, more compactly:

Cα = I − I ⊗ ∆tQ ⊗ A − Eα ⊗ N

Since Eα can be diagonalized, Cα can also be diagonalized and C−1
α can be computed in parallel!
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Some subtleties
Looks great in theory, but it is not so easy..

1 What’s α and how to choose it?
α small = rapid converence, but large diagonalization error
α large = small diagonalization error, but slow convergence

Convergence analysis suggests adaptive strategy!

2 On each time-step we now have to solve

(
(dlH + I) ⊗ I − ∆tQ ⊗ A

)
ũl = vl , dl = −α

1
L e−2πi l−1

L , 1 ≤ l ≤ L.

Déjà vu: Diagonalize Q and solve parallel across the nodes!

3 How costly is the diagonalization?
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Adaptive α strategy
Advection equation in 2D, fixed α vs. adaptive α coming from the convergence analysis
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Speedup
Advection equation in 2D, speedup for different accuracies and orders, space and 2x time

Member of the Helmholtz Association June 10, 2024 Slide 23



Parallelization across the steps with ParaDIAG
Is this IT?

Pros
Convergence speed is (often) very fast
Can speed up low order/low accuracy and high order/high accuracy simulations
Communication scheme is rather cheap (radix-2 butterfly in time)
Once implemented, usage is simple (esp. no coarsening)
Works well for hyperbolic problems

Cons
Implementation and theory have a lot of hidden pitfalls
Choice of α is somewhat fragile
And: nonlinear problems are much more difficult and less efficient
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Speedup for a nonlinear problem
Boltzmann equation in 3D, IMEX splitting, speedup in space and 2x time
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Three takeaways

256 512 1K 2K 4K 8K 16K 32K 64K 112K 224K 448K
Number of cores
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PFASST (theory)

time-serial PMG

PMG+PFASST

Parallel-in-Time integration (PinT) can help to extend prevailing
scaling limits

Collocation methods provide a fruitful and extensive playground
for all sorts of parallelization strategies

Prototyping ideas, with real code, on real parallel machines, is
crucial to find out about potential and limitations
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The PinT Community
To learn more about PinT check out the website

www.parallel-in-time.org

and/or join one of the PinT Workshops, e.g.

14th Workshop on Parallel-in-Time Integration

July 7-12, 2025
Edinburgh, UK
organized by Jemma Shipton and others

Also, there is a mailing list, join by writing to

parallelintime+subscribe@googlegroups.com
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