001     1033674
005     20250203133222.0
024 7 _ |a 10.1016/j.xcrp.2024.102280
|2 doi
024 7 _ |a 10.34734/FZJ-2024-06536
|2 datacite_doi
024 7 _ |a WOS:001361669100001
|2 WOS
037 _ _ |a FZJ-2024-06536
082 _ _ |a 530
100 1 _ |a Paddison, Joseph A. M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Spin dynamics of the centrosymmetric skyrmion material GdRu2Si2
260 _ _ |a [New York, NY]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1732793168_22614
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Magnetic skyrmion crystals are traditionally associated with non-centrosymmetric crystal structures; however, it has been demonstrated that skyrmion crystals can be stabilized by competing interactions in centrosymmetric crystals. To understand and optimize the physical responses associated with topologically nontrivial skyrmion textures, it is important to quantify their magnetic interactions by comparing theoretical predictions with spectroscopy data. Here, we present neutron diffraction and spectroscopy data on the centrosymmetric skyrmion material GdRu2Si2 and show that the key spectroscopic features can be explained by magnetic interactions calculated using density functional theory. We further show that the recently proposed 2-q “topological spin stripe” structure yields better agreement with our data than a 1-q helical structure and identify how the magnetic structure evolves with temperature.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bouaziz, Juba
|0 P:(DE-Juel1)157840
|b 1
|u fzj
700 1 _ |a May, Andrew F.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhang, Qiang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Calder, Stuart
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Abernathy, Douglas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Staunton, Julie B.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 7
|u fzj
700 1 _ |a Christianson, Andrew D.
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1016/j.xcrp.2024.102280
|g Vol. 5, no. 11, p. 102280 -
|0 PERI:(DE-600)3015727-4
|n 11
|p 102280 -
|t Cell reports / Physical science
|v 5
|y 2024
|x 2666-3864
856 4 _ |u https://juser.fz-juelich.de/record/1033674/files/1-s2.0-S2666386424005940-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1033674
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157840
910 1 _ |a Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics, University of Warwick, Coventry CV4 7AL, UK
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130548
910 1 _ |a Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:54:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:54:40Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:54:40Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP PHYS SCI : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP PHYS SCI : 2022
|d 2024-12-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21