001033675 001__ 1033675
001033675 005__ 20250203133223.0
001033675 000et $$eyes
001033675 0247_ $$2doi$$a10.3390/nano14231944
001033675 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06537
001033675 0247_ $$2pmid$$a39683332
001033675 0247_ $$2WOS$$aWOS:001376509400001
001033675 037__ $$aFZJ-2024-06537
001033675 082__ $$a540
001033675 1001_ $$0P:(DE-HGF)0$$aSzot, Krzysztof$$b0
001033675 245__ $$aTransition to metallic and superconducting states induced by thermalor electrical deoxidation of the dislocation network in the surface regionof SrTiO3
001033675 260__ $$aBasel$$bMDPI$$c2024
001033675 3367_ $$2DRIVER$$aarticle
001033675 3367_ $$2DataCite$$aOutput Types/Journal article
001033675 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1736259276_14439
001033675 3367_ $$2BibTeX$$aARTICLE
001033675 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001033675 3367_ $$00$$2EndNote$$aJournal Article
001033675 520__ $$aThe question as to why deoxidized SrTiO3−δ becomes metallic and superconducting at extremely low levels of oxygen vacancy concentration has been a mystery for many decades. Here, we show that the real amount of effused oxygen during thermal reduction, which is needed to induce superconducting properties, is in the range of only 1014/cm3 and thus even lower than the critical carrier concentrations assumed previously (1017–1019/cm3). By performing detailed investigations of the optical and electrical properties down to the nanoscale, we reveal that filaments are forming during reduction along a network of dislocations in the surface layer. Hence, a reduced epi-polished SrTiO3−δ crystal has to be regarded as a nano-composite consisting of a perfect dielectric matrix with negligible carrier density, which is short-circuited by metallic filaments with a local carrier density in the range of 1020/cm3. We present that electro-degradation leads to a more pronounced evolution of filamentary bundles and thus can generate a superconducting state with higher TC than thermal reduction. These findings indicate that traditional homogeneous models of superconductivity in self-doped SrTiO3−δ need to be revised, and we propose an alternative explanation taking into account the coexistence of metallic dislocation cores with polar insulating regions allowing for polaronic coupling.
001033675 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001033675 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x1
001033675 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x2
001033675 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001033675 7001_ $$0P:(DE-Juel1)142194$$aRodenbücher, Christian$$b1$$eCorresponding author$$ufzj
001033675 7001_ $$0P:(DE-HGF)0$$aRogacki, Krzysztof$$b2
001033675 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b3$$ufzj
001033675 7001_ $$0P:(DE-Juel1)125382$$aSpeier, Wolfgang$$b4$$ufzj
001033675 7001_ $$0P:(DE-HGF)0$$aRoleder, Krystian$$b5
001033675 7001_ $$0P:(DE-HGF)0$$aKrok, Franciszek$$b6
001033675 7001_ $$0P:(DE-HGF)0$$aKeller, Hugo$$b7
001033675 7001_ $$0P:(DE-HGF)0$$aSimon, Arndt$$b8
001033675 7001_ $$0P:(DE-HGF)0$$aBussmann-Holder, Annette$$b9
001033675 773__ $$0PERI:(DE-600)2662255-5$$a10.3390/nano14231944$$gVol. 14, no. 23, p. 1944 -$$n23$$p1944 -$$tNanomaterials$$v14$$x2079-4991$$y2024
001033675 8564_ $$uhttps://juser.fz-juelich.de/record/1033675/files/Invoice_MDPI_nanomaterials-3332653_2212.91EUR.pdf
001033675 8564_ $$uhttps://juser.fz-juelich.de/record/1033675/files/nanomaterials-14-01944.pdf$$yOpenAccess
001033675 8767_ $$83332653$$92024-11-27$$a1200209092$$d2024-12-04$$eAPC$$jZahlung erfolgt$$pnanomaterials-3332653
001033675 909CO $$ooai:juser.fz-juelich.de:1033675$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001033675 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a  A. Chełkowski Institute of Physics, University of Silesia, 41-500 Chorzów, Poland$$b0
001033675 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b1$$kFZJ
001033675 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a  Institute of Low Temperature and Structure Research, Polish Academy of Sciences (PAS), 50-050 Wrocław, Poland$$b2
001033675 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b3$$kFZJ
001033675 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125382$$aForschungszentrum Jülich$$b4$$kFZJ
001033675 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a  A. Chełkowski Institute of Physics, University of Silesia, 41-500 Chorzów, Poland$$b5
001033675 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a  M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Kraków, Poland$$b6
001033675 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Physik-Institute of the University of Zürich, University of Zürich, 8057 Zürich, Switzerland$$b7
001033675 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a  Max-Planck-Institute for Solid State Research, 70569 Stuttgart, Germany$$b8
001033675 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a  Max-Planck-Institute for Solid State Research, 70569 Stuttgart, Germany$$b9
001033675 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001033675 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x1
001033675 9141_ $$y2024
001033675 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001033675 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001033675 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
001033675 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001033675 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
001033675 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-26
001033675 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033675 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-26
001033675 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001033675 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001033675 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:26:48Z
001033675 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:26:48Z
001033675 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:26:48Z
001033675 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-02
001033675 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-02
001033675 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001033675 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
001033675 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001033675 920__ $$lyes
001033675 9201_ $$0I:(DE-Juel1)IET-4-20191129$$kIET-4$$lElektrochemische Verfahrenstechnik$$x0
001033675 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001033675 9201_ $$0I:(DE-Juel1)PGI-SO-20200511$$kPGI-SO$$lScience Office$$x2
001033675 980__ $$ajournal
001033675 980__ $$aVDB
001033675 980__ $$aI:(DE-Juel1)IET-4-20191129
001033675 980__ $$aI:(DE-Juel1)PGI-1-20110106
001033675 980__ $$aI:(DE-Juel1)PGI-SO-20200511
001033675 980__ $$aAPC
001033675 980__ $$aUNRESTRICTED
001033675 9801_ $$aAPCUSERDEL
001033675 9801_ $$aAPC
001033675 9801_ $$aFullTexts