000    
001     1033675
005     20250203133223.0
024 7 _ |a 10.3390/nano14231944
|2 doi
024 7 _ |a 10.34734/FZJ-2024-06537
|2 datacite_doi
024 7 _ |a 39683332
|2 pmid
024 7 _ |a WOS:001376509400001
|2 WOS
037 _ _ |a FZJ-2024-06537
082 _ _ |a 540
100 1 _ |a Szot, Krzysztof
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Transition to metallic and superconducting states induced by thermalor electrical deoxidation of the dislocation network in the surface regionof SrTiO3
260 _ _ |a Basel
|c 2024
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1736259276_14439
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The question as to why deoxidized SrTiO3−δ becomes metallic and superconducting at extremely low levels of oxygen vacancy concentration has been a mystery for many decades. Here, we show that the real amount of effused oxygen during thermal reduction, which is needed to induce superconducting properties, is in the range of only 1014/cm3 and thus even lower than the critical carrier concentrations assumed previously (1017–1019/cm3). By performing detailed investigations of the optical and electrical properties down to the nanoscale, we reveal that filaments are forming during reduction along a network of dislocations in the surface layer. Hence, a reduced epi-polished SrTiO3−δ crystal has to be regarded as a nano-composite consisting of a perfect dielectric matrix with negligible carrier density, which is short-circuited by metallic filaments with a local carrier density in the range of 1020/cm3. We present that electro-degradation leads to a more pronounced evolution of filamentary bundles and thus can generate a superconducting state with higher TC than thermal reduction. These findings indicate that traditional homogeneous models of superconductivity in self-doped SrTiO3−δ need to be revised, and we propose an alternative explanation taking into account the coexistence of metallic dislocation cores with polar insulating regions allowing for polaronic coupling.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 1
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rodenbücher, Christian
|0 P:(DE-Juel1)142194
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Rogacki, Krzysztof
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bihlmayer, Gustav
|0 P:(DE-Juel1)130545
|b 3
|u fzj
700 1 _ |a Speier, Wolfgang
|0 P:(DE-Juel1)125382
|b 4
|u fzj
700 1 _ |a Roleder, Krystian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Krok, Franciszek
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Keller, Hugo
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Simon, Arndt
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Bussmann-Holder, Annette
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.3390/nano14231944
|g Vol. 14, no. 23, p. 1944 -
|0 PERI:(DE-600)2662255-5
|n 23
|p 1944 -
|t Nanomaterials
|v 14
|y 2024
|x 2079-4991
856 4 _ |u https://juser.fz-juelich.de/record/1033675/files/Invoice_MDPI_nanomaterials-3332653_2212.91EUR.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1033675/files/nanomaterials-14-01944.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1033675
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a A. Chełkowski Institute of Physics, University of Silesia, 41-500 Chorzów, Poland
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)142194
910 1 _ |a Institute of Low Temperature and Structure Research, Polish Academy of Sciences (PAS), 50-050 Wrocław, Poland
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130545
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)125382
910 1 _ |a A. Chełkowski Institute of Physics, University of Silesia, 41-500 Chorzów, Poland
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Kraków, Poland
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Physik-Institute of the University of Zürich, University of Zürich, 8057 Zürich, Switzerland
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Max-Planck-Institute for Solid State Research, 70569 Stuttgart, Germany
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Max-Planck-Institute for Solid State Research, 70569 Stuttgart, Germany
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 1
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:26:48Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:26:48Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:26:48Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-4-20191129
|k IET-4
|l Elektrochemische Verfahrenstechnik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-SO-20200511
|k PGI-SO
|l Science Office
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IET-4-20191129
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)PGI-SO-20200511
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APCUSERDEL
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21