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Abstract: The question as to why deoxidized SrTiO3−δ becomes metallic and superconducting at
extremely low levels of oxygen vacancy concentration has been a mystery for many decades. Here,
we show that the real amount of effused oxygen during thermal reduction, which is needed to induce
superconducting properties, is in the range of only 1014/cm3 and thus even lower than the critical
carrier concentrations assumed previously (1017–1019/cm3). By performing detailed investigations
of the optical and electrical properties down to the nanoscale, we reveal that filaments are forming
during reduction along a network of dislocations in the surface layer. Hence, a reduced epi-polished
SrTiO3−δ crystal has to be regarded as a nano-composite consisting of a perfect dielectric matrix with
negligible carrier density, which is short-circuited by metallic filaments with a local carrier density in
the range of 1020/cm3. We present that electro-degradation leads to a more pronounced evolution
of filamentary bundles and thus can generate a superconducting state with higher TC than thermal
reduction. These findings indicate that traditional homogeneous models of superconductivity in
self-doped SrTiO3−δ need to be revised, and we propose an alternative explanation taking into
account the coexistence of metallic dislocation cores with polar insulating regions allowing for
polaronic coupling.

Keywords: superconductivity; thermal reduction; dislocations

1. Introduction

Since the discovery that the reduction of strontium titanate (STO) at high tempera-
tures and low oxygen activity (established by vacuum, reducing atmosphere, or oxygen
getters) can induce metallic or superconducting properties six decades ago [1–7], the re-
ported minimal concentration for the doping level, which is necessary for the mentioned
transition, has been permanently shifted towards lower levels. Recently reported critical
concentrations for metallicity are in the range of 1015 charge carriers per cm3 [8], which is
three orders of magnitude smaller than that predicted by the classical Mott criterion for
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STO [9]. Furthermore, superconductivity in STO has been induced by (nominally) homoge-
neous doping using extrinsic donors [10–14], by modulating the charge carrier density via
transistor-like configurations [15], and by generating two-dimensional electron gases, e.g.,
in LaAlO3/SrTiO3 structures or on modified STO surfaces [16–22], as well as by exploiting
interface effects, e.g., in FeSe/STO structures [23–27]. In the literature dedicated to the
transformation of stoichiometric STO (a band insulator) into a material with delocalized
electrons [9], it is assumed that the doping induced by thermal reduction is homogenous
throughout the whole crystal. Notably, Jourdan et al. [28,29] has already discussed an
essential contribution of the surface layer to the electrical transport phenomena in this
context. On the other hand, interdisciplinary studies have clearly presented that in the
surface region of thermally reduced STO (prepared under the same conditions as for the
transformation into a superconductor), oxygen vacancies are preferentially accumulated
along the cores of dislocations [30]. A similar effect has been observed in electro-degraded
STO at moderate temperatures of 200–500 ◦C [31]. This process results in a localized fila-
mentary metallicity related to a network of dislocations and has been used to explain the
nature of resistive switching in STO single crystals. Moreover, it has been found that in the
low resistance state (the so-called “on” state of resistively-switched STO), the filaments can
be transformed into nonstoichiometric titanium suboxides (TinO2n−1), so-called Magnéli
phases [31–34]. It should be noted that the terms “metal” or “metallic state” are used in
the following according to the definition by P.A. Cox [9], who classified metal oxides, in
which band theory seems to provide a good description for most of their properties, as
“simple metals”. However, reduced transition metal oxides might not fulfill all criteria of
the conventional definitions of a metal.

Verifying whether the character of the transition into the metallic state in thermally-
reduced STO is homogenous or filamentary is, in our opinion, the key to understanding the
nature of the superconductivity in this prototype material. Therefore, our paper is dedicated
to solve this problem. Despite the fact that in the literature about superconductivity,
homogenous models of the distribution of carriers dominate [35–42], whereas a filamentary
picture (accepting a non-homogenous incorporation of d1 electrons in the crystal) has been
established in numerous papers discussing resistive switching [43–53], we are able to find a
common denominator between the two mentioned completely controversial approaches. In
both models, it has been accepted that the origin of the electronic carriers generated during
reduction reflects the generation of ionized oxygen vacancies upon the thermally-induced
removal of oxygen from STO. Therefore, our paper begins with a discussion of the thermal
reduction process of STO in a vacuum. Then, we present the unique role of the surface
region for superconductivity (as supported by Jourdan et al.’s idea [28]). Two questions
will thus be answered. First, what is the accurate amount of oxygen vacancies generated by
such a treatment, and second, what is their distribution? Note that we will not discuss the
incorporation of oxygen vacancies after reduction in contact with a getter (e.g., metallic Ti)
in detail, which is connected with an enormous lowering of the partial pressure of oxygen
and, in consequence, leads to a stoichiometry polarization resulting in the creation of new
Ti-rich phases in the surface region [54].

The primary methods by which the amount of oxygen removed from the crystal
during reduction can be determined are based on either measuring the weight change in
the crystal (thermogravimetric analysis, TGA) or the oxygen outflow (quadrupole mass
spectrometry, QMS). These techniques allow comparison of the maximum concentration
of electronic charge carriers introduced during the reduction (2 × Ne ≈ NVÖ, for twofold
ionized oxygen vacancies) with an estimate of the charge carrier concentration from Hall
measurements (where the uniformity of the current flow is assumed without any detec-
tion at the nanoscale). Using the primarily mentioned gravimetric method, we can also
reliably calculate the number of oxygen ions that are released from the crystal during the
electrochemical formation of insulating STO. This process is also called electro-reduction,
electro-formation, electro-degradation, or electro-deoxidation, and is the first preparation
step of resistive switching. Since electro-reduction can be realized at moderate temperatures
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(T < 450 ◦C), we can use this method to induce a filamentary insulator-metal transition
and prevent the introduction of the oxygen vacancies in the matrix. Below 500 ◦C, an
incorporation of oxygen vacancies in the crystal matrix is not to be expected from point
defect chemistry. Hence, the transition process is only limited to the electroformed fil-
aments. This allows us to analyze the similarities and differences between metallicity
and superconductivity in STO after thermal and electrochemical reduction. Based on the
detection of filamentary conductivity, we hope to clarify the 60-year-old mystery about the
nature of the transition of a dielectric STO crystal into the superconducting state, which
occurs at an extremely small amount of oxygen vacancies, and propose new conceptions
(models) for a non-homogeneous transition.

2. Materials and Methods
2.1. Sample Preparation

Strontium titanate crystals (100) were purchased from CrysTec (Berlin, Germany).
Samples with typical dimensions of 10 × 3 mm2 and thicknesses of 0.5–1 mm were prepared
by means of wire saw cutting. The samples were then cleaned in an ultrasonic bath in
acetone, deionized water, and ethanol. The electrical connections were established using
thin Pt wires in a four-probe configuration [55] and, additionally, the contact sample and
wires were pasted with a conducting Pt suspension. Pre-heating in a vacuum at 200–300 ◦C
for 0.5 h was employed for removal of the organic solution in the Pt paste and the water
occluded on the surface of the sample.

2.2. Thermogravimetric Measurements

In situ measurements were achieved with a thermo-balance (TG439, Netzsch, Selb,
Germany) with a resolution of 0.1 µg. The reduction of the STO crystals was obtained under
vacuum conditions for an oxygen partial pressure below 10−10 bar at constant temperatures
(600–1100 ◦C, with steps of 100 ◦C). The weight change was related to a reference sapphire
crystal. The typical sample weight was 100 mg. Before the measurement was started, the
long-time drift of the thermo-balance was controlled using a further sapphire crystal as
calibration in the full temperature range. The weight analysis for a sample with a frozen
oxygen defect concentration after thermal reduction was conducted employing a sensitive
balance (SE-2 Micro Balance, Sartorius, Göttingen, Germany). This measurement was
carried out ex situ.

2.3. Thermal Reduction and Effusion Measurements

Thermal reduction was performed using a quartz tube furnace under ultra-high vac-
uum (UHV) conditions, and the effused oxygen was measured with a residual gas analyzer
(e-Vision 2, MKS Instruments, Andover, MA, USA). The base pressure was 5 × 10−10 mbar.
At first, the sample was pretreated in the cold zone of the tube at a temperature of ap-
proximately 300 ◦C in order to desorb water. Then, the oxygen effusion was recorded
while moving the crystal mounted on a holder made from Pt wires from the cold zone
into the hot region at a constant annealing temperature (e.g., 1000 ◦C) using a magnetic
transfer system. The experiment was conducted across three steps. First, a background
measurement was performed by measuring the partial pressures using QMS while moving
the empty Pt sample holder from the cold into the hot zone. In the next step, the STO
sample was measured at the same pressure and temperature as the reference measurement.
In a third control step, the reduced sample was repeatedly moved from the hot zone to the
cold zone and the oxygen partial pressure was measured. We observed only a background
signal in the third step, which indicated that the deoxidation process in the second step had
been completed. The difference in the oxygen spectra for this three-step measurement gave
a realistic amount of effused oxygen. In order to test if the speed of the turbomolecular
pump of the UHV apparatus remained constant during effusion, Ne and O gas were dosed
in the chamber via calibration leaks. The measured Ne partial pressure during this test
remained constant in an oxygen partial pressure range of 10−8–10−5 mbar, showing that
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the pumping speed did not change. The calibration of the relation between measured
partial pressure as a function of time and the amount of effused oxygen was obtained by
connecting a container filled with pure oxygen of a defined volume and temperature to the
UHV system. This oxygen was released to the measurement chamber via a needle valve
in order to hold the partial pressure of oxygen during pumping constant. The calibration
was performed twice for two different oxygen partial pressures. In this way, the average
sensitivity factor of our apparatus for oxygen effusion was determined. The maximal error
of our measurements was 15–20%. Further details of the measurement technique can be
found in [30,56].

2.4. Micro-Valdes Measurements

Four-probe resistance measurements were performed in so-called Valdes geometry [57]
with a custom-made measuring head, in which the distance between the Pt/Ir electrode
tips was 0.5 mm. The distance between the electrodes was controlled by optical microscopy.
An alternating current (AC) system (aixDCA, aixACCT Systems, Aachen, Germany) with
two electrometric followers was utilized for the electrical characterization. The typical AC
amplitude was a few mV at a frequency of 172.5 Hz. The details of the AC system were
presented in our previous paper [55].

2.5. Local Conductivity Atomic Force Microscopy (LC-AFM)

The LC-AFM measurements were performed under vacuum conditions at 10−5 mbar
using a JSPM 4210 setup (JEOL, Tokyo, Japan). Conducting Pt/Ir-coated tips (PPP-ContPt,
Nanosensors, Neuchâtel, Switzerland) were used and biased with a few millivolts. The
LC-AFM maps were analyzed using WinSPM software, version 407 (JEOL, Tokyo, Japan).
In order to reduce the noise level of the atomically-resolved conductivity maps, only a
software low-pass filter was used (without FFT transformation), noting that on all of the LC-
AFM maps with atomic resolution, the distribution of atoms was visible to the naked eye.
In order to ensure that true atomic resolution was achieved, the LC-AFM data were only
examined when the position of atoms (in the same region) was the same for several scans.

2.6. X-Ray Photoelectron Spectroscopy (XPS)

A XPS spectrometer using monochromatized Al-Kα rays (5600, Physical Electronics,
Chanhassen, MN, USA) was employed with a specially constructed heating stage, allowing
it to reach a maximal temperature of 1100–1200 ◦C in situ. An area with a diameter close to
1 mm was excited by the X-ray beam and the electrons were detected at a sample-detector
angle of 45◦ with an energy resolution of 0.05 eV. The pressure in the main chamber at
higher temperatures was in the range of 10−9 mbar. The furnace and heating elements did
not include any getter material (W, Ta, Mo, Ti, Si, C). Temperature measurements were
obtained with a type S micro-theromocouple and pyrometrically.

2.7. Electro-Reduction Apparatus

Details of the aixDCA apparatus (aixACCT Systems, Aachen, Germany), for electro-
reduction and resistance measurements, are provided in Rodenbücher et al. [55]. The
pressure in the vacuum chamber during the reduction process was p < 10−7 mbar (the
partial pressure of the oxygen was 2–3 orders of magnitude smaller than the base pres-
sure, i.e., pO2 < 10−9 mbar). The sample was annealed at 350 ◦C and a voltage of 200 V,
and a current compliance of 10 mA was applied. During the electro-reduction process,
the potential drop between the inner electrodes was monitored electrometrically. In this
manner, the total resistance of the sample (S), as well as the resistances of the bulk (B),
anode region (A), and cathode region (C) were measured. For comparison, we also per-
formed electro-reduction measurements in stepwise constant current mode with different
currents of up to 10 mA leading to a higher initial voltage. For a polarization voltage
higher than 200 V, the high ohmic input (Hi) of the electrometer (Keithley 6514, Keithley,
Solon, OH, USA) was connected to a voltage divider (1:100) consisting of high-impedance
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resistors (1011 Ω/109 Ω +/− 1%). In all of the electro-reduction experiments, the current
was measured with a Keithley 6430 subfemtoampere source (Keithley, Solon, OH, USA).

2.8. Superconducting Properties Measurements

Electrical resistance measurements were performed for rectangular samples with di-
mensions of 1.0 × 3.1 × 10 mm3 using the physical properties measurement system (PPMS
Model 7100, Quantum Design, San Diego, CA, USA) equipped with a 14 T superconducting
magnet. The four-point technique was used to measure the long-term resistance, R, with a
suitably high level of accuracy. Current leads (silver wires with a diameter of 0.1 mm) were
glued with silver epoxy to the end faces of the samples in order to obtain a homogenous
current distribution in the central area where voltage leads (silver wires with a diameter
of 0.05 mm) were glued at a distance of l ≈ 5 mm, which varied slightly for individual
samples. The obtained contacts had a resistance below 1 Ω for current leads and 20–50 Ω
for voltage leads (~0.5 mm-wide silver-epoxy strips) and were stable over time. For the
resistance measurements, the electric transport option (ETO) was utilized with an AC
current of 18–21 Hz frequency and amplitude of 0.05–0.2 mA. For these conditions, the
resistance in the normal state was frequency- and amplitude-independent. The resistance
in the magnetic field was measured with increasing temperature for a fixed field (magnet
persistent mode) or with increasing and decreasing fields for a fixed temperature. The
temperature was changed at a rate of 0.02 K/min, for which no significant R(T) hysteresis
was detected for the up and down sweeps.

2.9. Density Functional Theory (DFT) Simulation

We performed density functional theory calculations in the generalized gradient approx-
imation [58], employing the full potential linearized augmented plane wave method [59].
In order to correct the band gap of SrTiO3, we used a Hubbard U correction, as proposed
in [60]. For the simulation of the extended defect, three unit cells of SrTiO3 were removed
from a 6 × 5 × 1 supercell with an additional oxygen vacancy in the lower left of the defect.
The defect-induced states were energetically located at the bottom of the conduction band
to estimate their spatial distribution, and the charge density was integrated into the atomic
sphere of 1.9 Å around the Ti sites. The local polarizations in each unit cell were calculated
from formal charges of +2 and −2 for Sr and O, respectively, and their relaxed positions in the
Ti-centered unit cell.

3. Results
3.1. Thermal Reduction of Stoichiometric STO

The thermogravimetric measurements of the oxygen non-stoichiometry induced by
thermal reduction or electro-degradation of SrTiO3 → SrTiO3−δ + ½ δO2↑ at first glance
seem to be a suitable method for the determination of the amount of oxygen vacancies
(δVO = ½ δO2). A micro-balance is a typical tool for studying the effectivity of oxygen iso-
tope exchange in STO. However, one needs 6 months to foster a complete oxygen exchange
in a 0.3 mm thin crystal at 1000 ◦C [61]. In contrast, TGA studies of short-term reduction
(0.5–1 h) of STO under vacuum conditions show that the mass changes at 1200 ◦C are ex-
tremely low, namely, 10−4 of the reference weight [62]. Additionally, when performing the
reduction by using a flow of reduced gas (8% H2 in N2) at 1350 ◦C, a mass change of only
∆m/m = 1.5 × 10−4 has been reported [63]. Although our TGA analysis allowed the mea-
surement of a relative mass change in the order of 10−6, surprisingly, we were not able to
identify any mass loss during the reduction of an STO crystal at 1000 ◦C under vacuum con-
ditions (Figure 1). It has to be noted that with our resolution of mass change, we should have
been able to detect mass losses related to carrier concentrations of 4 × 1017–4 × 1019/cm3,
which have been reported by Collignon et al. [11] and references cited therein based on
Hall measurements. The concentration of twofold ionized vacancies was two times smaller
than the amount of electronic carriers. Therefore, the expected change of the weight be-
tween stoichiometric STO and reduced SrTiO3−δ is ∆m /mstoich. = 4 × 10−5 for a vacancy
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concentration of 2 × 1017/cm3 (green line in Figure 1), and ∆m/mstoich. = 4 × 10−3 for a
higher vacancy concentration of (2 × 1019/cm3). The measurements clearly demonstrate
that despite the same reduction conditions as in references [1,8], our balance “did not
budge”, although the (specific) resistance of our reduced crystal was smaller than the one
referenced [1].
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Figure 1. Mass loss of an STO crystal during thermal reduction performed subsequently at 900,
1000, and 1100 ◦C determined by thermogravimetric analysis ((a) overview, (b) magnification). The
hatched area shows the hypothetical mass loss expected from the carrier concentration, measured
by the Hall effect (4 × 1017–1019 carriers/cm3 [11]). The measured mass loss is below the resolu-
tion limit of the apparatus (±0.0005%), illustrating the discrepancy between the measurement and
previous assumptions.

We attempted an additional ex situ experiment to verify the possibility of gravimetric
identifications of the mass changes induced by thermal reduction at high temperatures and
UHV conditions. After reducing the sample, the concentration of oxygen vacancies was
frozen by quenching the crystal at an extremely fast cooling rate of 20–30 ◦C/s, a typical
method for the constitution of metallicity or superconductivity in thermally-reduced STO.
Using a micro-balance with a resolution of 0.1 µg, however, we did not detect any weight
differences before and after reduction of an STO crystal at 800, 900, and 1000 ◦C.

The analysis of the TGA data shows that this method is sensitive enough to falsify
the proposed amount of oxygen vacancies based on Hall measurements, but not sensitive
enough to determine the real concentration of oxygen defects introduced in the crystal upon
reduction. Therefore, a spectrometric measurement with a quadrupole mass spectrometer
is the only reasonable alternative for measuring the concentration of atoms released during
the reduction processes.

The QMS measurement of the effusion processes during the reduction and electro-
degradation of STO crystal has been obtained under UHV conditions with very low partial
pressures of oxygen and OH/H2O in the measuring chamber. The apparatus was cali-
brated with a precisely determined amount of oxygen molecules. Therefore, a container
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with an exactly defined volume, temperature, and oxygen pressure was connected to the
measurement chamber, and it was confirmed that the pressure when releasing the oxygen
into the measurement chamber was in the measuring range of the QMS and did not change
the pumping speed of the turbo-molecular pump. Additionally, information about the
desorption of physi- and chemi-sorbates from the surface in UHV is necessary. For exam-
ple, the product of calcination of SrCO3 (which is connected with the detachment of CO2
molecules from SrO terraces) at high temperatures and in vacuum conditions leads to the
dissociation of CO2 → CO + ½O2 and the generation of atomic/molecular oxygen, which
is not connected with the lowering of oxygen stoichiometry in reduced STO. Therefore,
an operando study using X-ray photoelectron spectroscopy (XPS) was conducted for the
same reduction temperatures. The analysis of the vanishing of the additional compounds
of the O1s core line and the disappearance of the carbon oxides (see C1s line in Figure 2)
admits an exact definition of the minimal temperature for which the surface of STO can
be classified as clean according to surface physics rules. Thermal reduction above this
temperature limit allows a clear correlation between the amount of outflowing oxygen
(measured with QMS) and the formation of oxygen vacancies that have reduced the mass
of the crystal.
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conditions showing carbon removal from the surface above 700–800 ◦C.

Table 1 lists the oxygen removed during the thermal treatment at different tempera-
tures. It should be noted that the values of 600 ◦C and 700 ◦C should be considered with
caution, as they do not represent a pure concentration of oxygen vacancies in the crystal
but are mixed with the desorbed oxygen from chemisorbates (here disassociated CO2).
Despite the extremely small number of oxygen atoms generated by thermal reduction
or electro-degradation, the crystal was transformed into a metallic state (see Table 1 and
references [30,31,64]). Our QMS data, on one hand, show the impossibility of the detection
of the mass loss using a balance and, on the other hand, illustrate the giant dissonance
between the measured real concentrations of effused oxygen (which corresponds to the
number of oxygen vacancies) and the carrier concentration determined using the Hall
effect. This finding seriously calls into question the applicability of the magneto-effect for
measuring the vacancy and carrier concentration of self-doped STO. In comparison to the
insulator-metal transition induced by doping STO with aliovalent cations, e.g., La or Nb,
the measured critical concentration for reduced or electro-degraded STO is 5–7 orders of
magnitude smaller, which is a challenge for understanding the nature of this process. We
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must be aware that in both doping types, the electron transferred back to Ti either from the
dopant cations (e.g., La3+ or Nb5+) or from the ionized vacancies (V··

O ) is responsible for the
increased electrical conductivity.

Table 1. Effusion of oxygen from an STO substrate during reduction under UHV conditions.

Temperature (◦C) Amount of Effused Oxygen from an STO Crystal with
Size 1 × 1 × 0.05 cm3

600 1.3 × 1012 *
700 2.1 × 1012 *
800 1.6 × 1012

900 5.5 × 1012

1000 5.3 × 1012

* For 600 and 700 ◦C, a maximum rate of calcination of SrCO3 was observed by operando XPS (O1s and C1s).
This process is limited to the SrO-terminated surface with chemisorbed CO2 [31], leading to the desorption of
CO2. At this high temperature, the sources of emitted oxygen are not only the core of dislocations, but also the
decomposition of CO2→CO + ½O2.

So why do we need only such a low concentration of oxygen defects to “switch”
the crystal to a metallic or superconducting state for both types of doping, despite the
dominant role of d1 electrons? This paradox can be understood if we consider the crystal
as an inhomogeneous object before and after the removal of oxygen. For the optimal
thermally-reduced STO, the reduction time should be coordinated with the position of the
resistance minimum of the reduction curve for each temperature (see [64]). Such a crystal
achieves optimal electrical conductivity and changes its color to grey or dark blue. At this
point, we need to accept that prolonged annealing under constant oxygen partial pressure
does not lead to the establishment of an equilibrium state as could be expected from point
defect chemistry [65]. Due to the self-healing effect, the prolongation of the annealing time
renders the crystal more transparent and the electrical conductivity decreases again. This
means we have only a short time interval for reaching a maximal reduction state of the
STO crystal [18]. However, if we look closely at such a maximally reduced crystal, the
transparency is not reduced in the whole crystal. As can be seen from the tomographic
optical investigation presented in Figure 3, the major contribution to the absorption due to
free d carriers introduced during the reduction process stems from the surface region. Only
the plates containing the surface regions are responsible for the strong optical absorption.
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Figure 3. Investigation of the optical transmission of a reduced crystal. As schematically illustrated,
the crystal was cut into three parts after thermal reduction (left). After cutting the crystal, all rough
surfaces were epi-polished. The graph displays the spectral dependence of the normalized absorption
for the whole reduced crystal (black), its middle part (green), and both parts including the surface
regions (red and blue), illustrating that the dominant absorption comes from the surface regions.
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Another impressive proof of the dominance of the surface region of optimally ther-
mally reduced STO in electrical transport can be provided by so-called resistance tomogra-
phy analysis using the micro-Valdes method. Through the successive mechanical removal
(polishing) of thin layers of approximately 10 µm thickness starting from the original
surface of the reduced crystal, the contribution of polished areas to the total conductivity
can be measured. Figure 4 shows that the upper part of the surface area (with a several
µm thickness) contributes dominantly to the total conductivity, analogous to the optical
measurements (Figure 3). This conclusion is in agreement with our in situ analysis of the
surface of reduced STO obtained by the four-tip scanning tunneling microscopy (STM)
method [66], which allows for calculation of the contribution of layers of different thick-
nesses in the surface regions to the total conductivity by modifying the distance between
the tips. Furthermore, these measurements revealed that the character of the conductivity is
not a homogeneous bulk conductivity, but is confined to the surface region. This behavior
demonstrates the “spectator role” of the bulk in electrical transport. The optical absorption
and resistance tomography measurements highlight the special role of the surface region.
Still, they did not answer how this region can be switched into a metal or superconductor
after the effusion of a very small amount of oxygen. Hence, we will take a closer look at
this region in the following subsection.
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Figure 4. Illustration of resistance tomography measured with the micro-Valdes method for optimally
reduced STO realized by subsequent mechanical removal of the surface (a–e). In each polishing
step, a layer with a thickness of d1 = d2 = d3 ≈ 10 µm was removed. The major contribution to the
global resistance comes from the last few dozens of micrometers-thin surface regions (see difference
between (a,b)). The resistance of the reduced crystals determined after removal of 3 layers with a
total thickness of about 30 µm (here 2.8 MΩ) is of the same order as after polishing half of the crystal
(3.35 MΩ in (e), d/2 = 250 µm).

3.2. The Dislocation Network in the Surface Layer of Epi-Polished STO

Due to the mechanical polishing of the surface of the STO crystal, a network of
extended defects (especially edge dislocations) is introduced in a surface region with a
thickness of approximately 30 µm. This network possesses a ranking character. The dislo-
cation density is 1010/cm2 for epi-polished surfaces and 1012/cm2 for a rough surface (e.g.,
after cutting). In the deeper part of the surface region, the dislocation density reaches the
original density of dislocations in the virgin crystal, 106–107/cm2 [31,67]. This progressive
reduction in the density of dislocations with increasing depth automatically leads to the
creation of a hierarchic tree; that is, the number of branches below the nodes is smaller
than above the nodes (with respect to the surface of the crystal). Since the dislocations as
extended defects underlie the crystallographic rules, the conservation of the Burgers vector,
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which describes the distortion of the lattice caused by a dislocation [68], is required for each
node where dislocations meet, i.e., the sum of the Burgers vectors must be zero at this point.
The existence of a network of dislocations in the perfect matrix of the dielectric SrTiO3
crystal complicates the description of the surface region not only from the crystallographic
point of view, but also regarding changes in the local chemistry/composition, electronic
structure, and polarization of the dislocation core (see investigations by transition electron
microscopy (TEM), electron energy loss spectroscopy (EELS), and energy dispersive X-ray
spectroscopy (EDX) [69–73]). As a result, the interconnected dislocations in the network
cause an electrical short circuit of the insulating part of the crystal.

Now, with the information about the chemical composition of dislocations cores and
their interrelated connection in the surface region, we can identify why an insulator-metal
transition can be induced in the surface region at very low concentrations of oxygen
vacancies, which are generated during thermal and electrochemical deoxidation of this
native composite: bulk STO + a network of dislocations. The core of dislocations in
stoichiometric STO possesses a composition similar to Ti3O5 [69–73], Ti2O3, or TiO, as
provided by high-resolution TEM/EDX measurements. For such a chemistry of the core
of dislocations, the local concentration of oxygen vacancies is approximately a few dozen
per cent [70]. Because the segments along the dislocation’s line do not have continuously
identical oxygen non-stoichiometry, the serial connections of metallic TiO are interrupted
by, e.g., semiconducting Ti3O5. Therefore, in the original dielectric STO substrate, the set
of dislocations as a whole do not produce a metallic short circuit, although fragments of
dislocations with metallic properties exist (see the comparison between the macroscopic
resistance of the stoichiometric STO and nanoscopic investigations using LC-AFM [31]).
During the thermal or electrochemical deoxidation, the segments of higher TiO oxides will
be preferentially reduced (see thermodynamic rules for reducing TiO oxides [31]). In this
way, the semiconducting fragment of dislocations becomes metallic (Figure 5) and can create
a continuous metallic short circuit with the other metallic pieces. This behavior is essential
for understanding why our nano-composite in the surface region can be transformed into
a metallic system and, consequently, a superconductor for this extremely low effusion of
oxygen. Of course, it could be assumed that the position of the segments with metallic
properties may be arbitrary (e.g., the TiO metallic segment could be close to the surface
of the crystal, as depicted in Figure 5). In this case, the problem arises as to whether it
would be possible to diffuse oxygen through the low Ti oxides region with delocalized d
electrons. Marshall et al. have impressively demonstrated that, for low Ti oxides, where
oxygen vacancies are an integral part of the structure, the hopping of this point defect can
occur at higher temperatures [74] with similar enthalpy as for oxygen in STO.

To not repeat experimental data about the thermal reduction of STO and the role
of dislocations in this process, we only list the following properties with appropriate
literature references:

1. Thermal reduction is limited to the core of dislocations (see the correlations between
position etch pits and the position of the conducting filaments [30,31,64,75]). Sig-
nificantly, during this reduction, the segment of dislocations with higher Ti oxides
increases the oxygen non-stoichiometry more easily, i.e., it is more effectively reduced.
The resistance of conducting dislocations in stoichiometric STO is lowered by six
orders of magnitude after reduction, although the dislocations are segmented with
metallic TiO or semiconducting Ti2O3 nanophases [31].

2. The area between conducting dislocations (the so-called matrix) of reduced STO
possesses the same electrical resistance as in a stoichiometric crystal (resistance of
1015 Ω [30,31]).

3. The concentration of the conducting filaments and their distribution (LC-AFM map-
ping in-plane) is similar to the density of dislocations and their distribution determined
by the TEM and etch pits technique [30,31].
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4. For the cross-section of thermally reduced STO (Figure 6), the correlation between the
distribution of conducting filaments (LC-AFM) and the change in dislocations density
(TEM) has been given in [31].

5. The properties presented in points 3 and 4 allow us to analyze the dislocation distribu-
tion in the surface region with a thickness of 30–40 µm as a hierarchic tree of extended
defects and, from an electrical point of view, as a hierarchic network of galvanically
conducting dislocations [30].

6. From nanoscopic measurements of the integrated electrical conductivity of the edge
dislocations, the macroscopic metallic conductivity can be derived [31]; the rest of the
crystal plays only the role of “spectator” for the electrical transport, although it is a
supporter of the three 3D metallic networks of dislocations.
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Figure 5. Illustration of a core of dislocation during the reduction process. Based on HRTEM,
ChemiSTEM, and EELS investigations, the local chemical composition of a core has to be regarded
as a combination of segments with different content of oxygen typical for low Magnéli phases or
low Ti oxides (here TiO). At high temperatures and low partial pressure of oxygen, the maximum
deoxidation rate occurs in the segment with highest oxygen stoichiometry (e.g., Ti3O5 [31]).

In order to illustrate the highly inhomogeneous conductivity of thermally reduced
STO, we performed LC-AFM as depicted in Figure 7. A bundle of conducting filaments,
whose conductivity decreases rapidly at a distance of 1–2 nm, can be identified at the
boundary (see lower right corner). This demonstrates that outside the agglomerated
filaments, the conductivity is very low. Since the internal transimpedance amplifier of
our LC-AFM having a sensitivity in the picoampere range does not allow analyzing the
low conductivity between the bundles, we have used an external highly sensitive current-
to-voltage converter for the determination of the resistance in this part of crystal, which
is free of filaments. In this area, the conductivity is, in fact, similar to stoichiometric
crystals, i.e., the local resistance under the AFM tip is in the range of 1012 Ω (see [31]). This
discovery also confirms the role of the bulk as a “spectator” in electrical transport, even in
reduced crystals.

Finally, after this comprehensive analysis of the macroscopic and microscopic prop-
erties of the network of dislocations in the surface region, we are now in a position to
calculate the average local concentration of the charge carriers introduced by the thermal
reduction along the core of dislocations (Table 2). Therefore, the increase in oxygen non-
stoichiometry in the network at each temperature step was calculated by assuming that the
total effused oxygen (taken from Table 1) only originated from a network of dislocations
in the surface region with a volume of 1 × 1 × 0.003 cm3. With the dislocation density
estimated by Wang et al. [67], this resulted in a total length of dislocations of 2.6 × 106 cm.
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For calculating the total volume of dislocations network, it was assumed that the HRTEM
radius of dislocations core was equal to 10−7 cm.
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Figure 6. LC-AFM cross section analysis of a thermally reduced STO crystal. The mapping on a
cleaved plane has been obtained in three positions as schematically depicted in (a). The out-of-plane
distribution of filaments (conducting dislocations) in different positions (b–d) shows the hierarchic
character of the dislocations tree/network in the upper part of the surface region. The change in
filament density as a function of distance from the crystal’s surface indicates a similar trend as in
the dislocation distribution in the surface region investigated with TEM (cyan curve in (e)) [67]. To
record LC-AFM mapping of the deeper parts of the surface region, the position of the tip was shifted
by scanning (using a micro-table) by about 17–18 µm relative to the previous mapping; in this case,
for a scanning area of 20 × 20 µm2, it was possible to “seamlessly” connect two or three maps.
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Figure 7. LC-AFM map of the electrical conductivity near a bundle of filaments. The red circle marks
the conductivity increase close to the dislocation’s position. The change in the orientation of the blocs
around the highly conducting area (see the different twisting of the orientation of the rows of atoms
marked with yellow lines; here, 18◦ and 30◦) suggests a kind of structural transformation into low
TiO oxides. During scanning, a polarization of only 2 mV was used. The data are original data, and
only a low-pass filter was used for the reduction of high frequency noise. A similar atomic resolution
was observed for many scans and different regions of thermally reduced crystals.

The value of the local concentration of the carriers introduced by the selective genera-
tion of oxygen vacancies along extended defects in the hierarchic network of dislocations is
similar to the doping level of La or Nb (of a few per mille) necessary “to switch” the stoichio-
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metric STO into a metallic conductor and consequently into a superconductor [11,12]. In
other words, our analysis suggests not only a giant heterogeneity in the electrical transport
phenomena in reduced STO crystals (with a dominating contribution to the conductivity
from preferentially reduced cores of dislocations), but also questions the existence of the
part of the superconducting dome used for the creation of the models for dilute doping
in SrTiO3-δ.

Table 2. Comparison of the total amount of effused oxygen of an STO sample (cf. Table 1) with the
estimated local oxygen concentration close to preferentially reduced dislocations.

Temperature (◦C) Total Effused Oxygen Increase in Oxygen Non-Stoichiometry
in the Dislocation Network *

Total Oxygen Non-Stoichiometry
in the Network

800 1.6 × 1012 1.9 × 1019/cm3 1.9 × 1019/cm3

900 5.5 × 1012 6.6 × 1019/cm3 8.5 × 1019/cm3

1000 5.3 × 1012 6.4 × 1019/cm3 1.5 × 1020/cm3

* The values for 600 and 700◦ were not considered due to the limitations discussed in Table 1.

3.3. Stability of the Surface Region upon Heavy Thermal Reduction

In transforming stoichiometric STO crystals via thermal reduction into a metallic or
superconducting state, four factors play an essential role: the reduction temperature, the
oxygen activity, the time of the exposition on reducing conditions, and the quality of the
crystal [64]. 60 years after the discovery of semiconducting properties of thermally reduced
STO [1], one would expect that this transformation would be completely understood and
allow for tailoring the required electrical properties of the crystal by choosing appropriate
reduction conditions. Nothing could be further away from the truth. It was reported that
even when treating different samples from the same batch with identical geometry under
identical reduction conditions, their resistance can vary by many orders of magnitude (e.g.,
see the paper by Spinelli et al. [8]). In the literature about thermal reduction of STO, one
can find that such a treatment has been obtained at a broad range of temperatures (from
600–1400 ◦C) and different reduction times spanning from 1 to 20 h [8,76–79].

Reduction under vacuum conditions, which can be generated by fore-vacuum pumps,
turbomolecular pumps, or ion-getter pumps, allows for the introduction of oxygen va-
cancies in the system (in most cases, it can be found in the literature that the reached
vacuum is in the order of 10−6 mbar). Unfortunately, the term “vacuum” does not con-
tain information about the partial pressure of oxygen, a critical parameter for reaching
the point defect equilibrium. The two other methods used to reduce oxygen activity are
connected with reducing gases (H2 or gas mixtures of CO/CO2) or metallic getters. In
this first case, information about the partial pressure of oxygen allows reduction under
defined conditions, but with one small caveat: the temperature used in such a treatment is
extremely high (from 1000–1400 ◦C) [62,63]. This high reduction temperature introduces
oxygen vacancies and completely changes the surface layer’s chemical composition. Our
in operando XPS studies showed that the surface layer transforms into Ti-rich phases (the
ratio Sr/Ti is lowered from 1 to ~0.05 and the dominant Ti valence is 3+ and 2+ [31]). Under
extremely reducing conditions (pO2 < 10−17 bar), which can be established by a Ti getter or
electrochemical stoichiometry polarization and high temperatures of 1100–1250 ◦C, even
the oxide Ti3O can be created. Note that for a Ti2O single layer, the transition into the
superconducting state at 9.8 K has been reported already [80]. Our LC-AFM mapping
of strongly reduced SrTiO3 presented in Figure 8 reveals that the electrical conductivity
increases, and the symmetry changes to hexagonal, which is, for example, typical for Ti2O.
Therefore, regarding superconductivity, such a heavily reduced region can be analyzed as
TiOx or TiyO with a typical superconducting dome, in which TC is a function of the oxygen
content [81].
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Figure 8. LC-AFM mapping (polarization voltage 10 mV) of a part of a strongly reduced STO crystal.
(a) Current distribution on the nanoscale; (b) magnification of a highly conducting region with atomic
resolution showing that the lattice constant and the symmetry (see fast Fourier transform in the inset)
of the conducting island has been significantly transformed compared to stoichiometric STO.

3.4. Electroreduction of STO

In order to enhance the filamentary network of conducting dislocations, electro-
reduction was performed. This method allowed the induction of well-defined dislocation-
based metallic filaments (for details, see Supplementary Information). During this process,
a short circuit associated with orthogonal dark bands in [100] orientation was generated
between the anode and cathode [82]. Within the dark bands connecting the anode with the
cathode, an alignment of dislocations can be seen from the etch pits analysis (Figure 9a).
Similar to the thermally reduced crystals, it was shown that the oxygen effusion during
electro-reduction is extremely low, and only at the filaments is a carrier concentration high
enough for metallic conductivity present [82]. Within the bands, an increased conductivity
was observed by LC-AFM, confirming the correlation between dislocations and filamentary
conductivity (Figure 9b). From the magnified LC-AFM maps (Figure 9c), it is apparent that
the bands consist of bundles with a 40–50 nm radius, containing more than two hundred
highly conducting filaments with a radius of approximately 2 nm each.
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Figure 9. Detailed analysis of the dimension of the filaments. (a) Microscopic inspection of the
etch pit distribution; (b) in-plane LC-AFM map obtained near the cathode (Usample = −0.01 V);
(c) magnification of (b) with filament bundles marked by a black dashed line; (d) magnification of
a typical bundle; (e,f) LC-AFM maps of a nanofilament obtained with atomic resolution (the black
dashed circle marks the region with highest lattice distortion and conductivitiy); and (g) temperature
dependence of the resistance, measured by placing the LC-AFM tip above a nanofilament.
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Between the highly conducting nanofilaments, an increased conductivity can be ob-
served (Figure 9d), which is one to two orders of magnitude lower than in the center of the
filaments, but still significantly higher than in the insulating matrix. The distance to the
neighboring nanofilaments was less than 3–4 nm for most of the filaments in the bundle.
This suggests that the nanofilaments act as collective electron sources, doping the region
between themselves. Close to the exit of a dislocation, whose position can be identified
by analyzing the course of the atomic rows, the local conductivity reached a maximum
(Figure 9f). In contrast, the conductivity between a nanofilament and the matrix at the
edge of a bundle was three orders of magnitude smaller within only 1 nm (Figure 9e).
In addition, the resistance of selected sets of bundles measured by LC-AFM (Figure 9g)
increased with temperature, thus indicating metallic behavior.

3.5. Simulation of the Electronic Structure

In order to shed some light on the nature of metallic filaments forming in an insulating
perovskite matrix, we performed DFT calculations (for computational details see Section 2.9)
of extended defects (Figure 10a). Although quite simplified, this model captured two
important aspects: (i) a one-dimensional, stoichiometric defect creates an “inner surface”
where vacancies can be easily formed, and (ii) an oxygen vacancy (VO) at this inner surface
leads to the formation of a defect state at the bottom of the conduction band, i.e., Ti d-states
are available around the Fermi level, electronically similar to lower Ti oxides [83]. As the
formation energy of VO is lower at an (inner) surface than in the bulk [84], the accumulation
of such defects at inner surfaces is likely. In addition, tendencies for the clustering of these
defects have been reported [85]. The charge density of the defect state is primarily located
on the nearby Ti ion (the blue DOS curve in Figure 10a) and in the region between the atomic
spheres (red line). In Figure 10b, we estimated the charge density locally by integrating the
induced defect charges in the Ti atomic spheres of the individual unit cells (red bars). A
charge density in the order of 5 × 1020 electrons per cm3 extends into the region between
two such extended defects (columns 1 and 6). This defect charge density decays quickly in
the matrix, but larger conductive areas can form in a bundle of one-dimensional defects.
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Figure 10. DFT simulation of neighboring one-dimensional extended defects in STO. (a) Illustration of
the electronic structure. The inset shows the relaxed structure with oxygen atoms marked in red and
Ti atoms in blue. The vacancy-induced states are visible in the density of states (DOS) at the bottom
of the conduction band. The total DOS is shown in black, the local DOS on the Ti atoms adjacent to
the vacancy in blue, and the interstitial DOS (between the atomic spheres) in red. A cut through the
induced charge density is shown in the inset underlying the atomic structure. Bright areas indicate
a high electronic density. Large local polarizations are indicated by yellow arrows. (b) Polarization
(black) and defect-induced charge densities (red) in STO near the extended defect. The vertical and
horizontal positions of the Ti atoms are labelled with (A, B) and (1, . . . , 6), respectively, and are
visualized in the inset of (a). For comparison, the size of the local polarizations in an extended defect
without the oxygen vacancy are indicated by the grey bars.
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We investigated how these local charges influence the local, static polarizations, as the
formation of polar regions in combination with a conductive region will be essential for
superconductivity. To estimate this quantity, we employed a simple ionic model based on
the formal charges and the positions of O (rO) and Sr (rSr) relative to Ti ions, calculating
PTi = ∑(rSr/4 − rO). Yellow arrows indicate these polarizations in the inset of Figure 10,
and their norm is summarized in Figure 10b (black bars). We compared them to the
polarization of a stoichiometric extended defect without VO (grey bars). As is apparent, a
small electronic density (below 5 × 1020) does not quench the local polarizations (of course,
some reconstruction also results from the presence of the additional defect), and larger
densities (position A1 and A2) can lead to some local reduction of PTi, i.e., high densities
are anticorrelated with the polarization.

3.6. Measurements of the Superconducting Properties

We analyzed the superconducting properties of electro-reduced STO via low-temperature
conductivity measurements in a magnetic field. For comparison, we also investigated a
thermally-reduced crystal, in which a network of nanofilaments was not as pronounced and
bundled as for electro-reduced STO. We utilized samples from the same crystal to ensure
comparability (see Supplementary Information). For the thermally and electro-reduced STO
samples, the temperature dependencies of the resistance were measured (Figure 11a). The
resistance was divided by the distance between voltage contacts, R/l, such that the linear
resistance characterizing a given material was obtained for samples with the same cross-section.
As is evident from Figure 11a, R/l decreased with temperature, designating metallic properties.
The resistance of the electro-reduced sample (with larger density of metallic nanofilaments)
was significantly lower than that of the thermally reduced one, confirming that the metallic
properties of deoxidized STO are, as we demonstrated, confined to the nanofilaments. At
temperatures below 0.25 K, both samples exhibited a sudden drop in the resistance, which
is characteristic of superconductivity. In Figure 11b, the resistance R normalized to the
normal-state resistance at 0.25 K, Rn0.25K, is presented near the transition temperature, Tc.
The superconducting transition temperature for the electro-reduced sample (TC ≈ 0.2 K) was
more than a factor of two larger than that for the thermally-reduced sample (TC ≈ 0.09 K),
suggesting that superconductivity in the electro-reduced sample is caused by the bundled
nanofilaments, and therefore enhanced by their increased density. An increase in TC with the
volume of the superconducting phase has been observed for “nano-sized” materials, e.g., in In
and Pb nanoparticles [86] and Mo-Ge nanowires [87], with sizes comparable to the diameters
of the nanofilaments (2–5 nm) and filamentary bundles (40–50 nm) found in our samples.
Note that in the “superconducting” state, none of the samples exhibited zero resistance,
which serves as another strong indication for non-percolative filamentary superconductivity
(spatially-separated phase-coherent superconducting regions) [88] in deoxidized STO.

The behavior of R/l(T) in a magnetic field for the thermally and electro-reduced
STO samples is shown in Figure 11c and Figure 11d, respectively. The results prove
the superconducting nature of the transition to a lower resistance state and allow the
temperature dependences of the upper critical field, Hc2(T), to be determined. The criteria
0.5∆R and 0.9∆R were used, where ∆R is the change in resistance upon entering the
superconducting state. Figure 11e shows the Hc2(T) results for the electro-reduced sample,
with the fitting of the experimental data to equation Hc2(T) = Hc2(0)(1 − t2)/(1 + t2), where
Hc2(0) is the value of the critical field at T = 0, t = T/TC, and TC is the superconducting
transition temperature at H = 0. Depending on the criterion, 0.5∆R or 0.9∆R, the coherence
lengths ξ0 ≡ ξ(T = 0) = [ϕ0/2πHc2(0)]0.5 ≈ 49 nm and 39 nm were obtained for the values
Hc2(0) ≈ 1.4 kOe and 2.2 kOe, respectively, extracted from the fitted Hc2(T) dependences.
The linear extrapolation of Hc2(T) to Hc2(0) from the last experimental point in the high
fields gives ξ0 ≈ 47 nm and 35 nm, depending on the criterion, which are lower limits
for ξ0.
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the same cross-sectional area, where l is the distance between the voltage leads; (b) R/Rn0.25K ratio for
the thermally and electro-reduced STO samples below the superconducting transition temperature
TC (Rn0.25K is the value of R in the normal state at 0.25 K); resistance, R/l, vs. temperature for (c) the
thermally reduced and (d) the electro-reduced STO samples measured in different magnetic fields
at a current of I = 0.1 mA; (e) upper critical field, Hc2, vs. temperature for the electro-reduced STO
sample. The results were obtained using the data displayed in (d) with the criterion 0.5∆R (blue
triangles) and 0.9∆R (green triangles), where ∆R is the change in the resistance at the transition
to the superconducting state. The dashed lines show the fitting of the experimental results to the
equation Hc2(T) = Hc2(0)(1 − t2)/(1 + t2) where t = T/Tc; (f) resistance, R/l, vs. temperature for the
electro-reduced STO sample measured in different magnetic fields and at two measuring currents,
I = 0.05 mA (open symbols) and I = 0.1 mA (closed symbols), for comparison.

In order to test which of the criteria (0.5∆R or 0.9∆R) provides more correct Hc2(T) val-
ues, R(T) for the electro-reduced sample was measured at two different currents, 0.05 mA
and 0.1 mA, and the results are shown in Figure 11f. For both currents, the transition to
the superconducting state began at the same temperature, but for I = 0.1 mA, the tran-
sition was significantly broader, indicating an influence from the vortex dynamics. In
order to minimize this effect, the more appropriate 0.9∆R criterion was used to extract
Hc2 (0) ≈ 2.2 kOe, ξ0 ≈ 39 nm, and TC ≈ 0.20 K. A coherence length of ξ0 ≈ 40–50 nm is
typical for conventional low-temperature bulk superconductors, e.g., Hg, Nb, or In. More-
over, the value of ξ0 ≈ 40 nm approximately corresponds to the diameter of the filament
bundles, 40–50 nm, as obtained from the LC-AFM studies (see Figure 9), supporting our
assertion that superconductivity, as well as the metallicity of STO, is filamentary in nature
and appears in the reduced cores of dislocations.
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3.7. Theoretical Description of Superconductivity

Generally, electron/hole pairing depends on the strength of the electron–phonon inter-
action λ, which is the product of the density of states and the electron–phonon interaction
potential. This quantity must be larger than the Coulomb repulsion in order to produce
pairing. In our low carrier density system, the Coulomb interaction is almost negligible
within the insulating matrix, but might have some relevance, even though minor, in the
metallic filaments [1]. For the insulating matrix, it is obvious that the density of states is too
low to cause any feasible pairing, whereas in the filaments it achieves values comparable
to other oxide superconductors; however, this interaction is not strong enough to cause
superconductivity. This implies that the electron lattice interaction must be unconvention-
ally strong, which immediately suggests polaron formation. It needs to be emphasized
here that a very strong polaronic coupling leads to localization relevant to the matrix and
causes polar properties, whereas a too small coupling causes band formation and delo-
calization. The intermediate coupling regime is the interesting one, which can mediate
superconductivity. Interestingly, in our case, we are dealing with two components [10],
namely, extremely strong coupling in coexistence with intermediate coupling. In addition,
domains and domain walls play a crucial role, but are not considered in the following [89].
The interplay between strong and weak coupling regions has been shown to be the cause of
electron pairing even if one channel (namely the insulating one) is, on its own, not supercon-
ducting, but is dragged into a superconducting state by the metallic one due to interband
interactions. Theoretically, the polarizability model [90,91] and DFT calculations have been
employed to confirm the heterogeneous character of doped STO. The polarizability model
is based on the nonlinear polarizability of the oxygen ion, i.e., O2−, which in a crystal is
stabilized by the surrounding ions. This implies that only the Ti ions, which adopt the d1

configuration, are affected in doped or electro-degraded STO. In turn, the surrounding
O2− ions are repulsed and cause locally strongly distorted regions. The essential task for
both approaches is, however, to demonstrate the coexistence of a polar matrix with regions
of different chemical composition. By concentrating on the dynamic properties of STO
and knowing their development with carrier concentration n, the STO-related double-well
potential has been shown to change its character from double- to single-well with n, where
nc defines the border line for this change [75,92]. As for n > nc, the superconductivity
vanishes and a global metallic state is realized, and we only concentrate on the region
n < nc.

The essential phonons in STO are the lowest lying soft transverse optic and acoustic
modes [4]. Interrelation between these two branches is the signature of the formation of
local polar nano-regions. By calculating the phonon group velocities for the two considered
branches [93], these become very apparent and yield the momentum at which the local,
spatially-confined soft modes occur, and where the scattering between the two modes is the
strongest [94]. The corresponding squared polar optic mode frequency ω2

TO(q) is displayed
in Figure 12a as a function of carrier concentration n, temperature T, and momentum q. As
is obvious from the figure, this local polar mode softens with decreasing temperature and
moves to lower momentum values, but never reaches the homogeneous q = 0 limit [75]. In
addition, the softening is reduced with increasing carrier concentration [95], and its mo-
mentum space decreases, indicating the growing spatial confinement and the shrinking of
the polar nano-domains. In contrast to a long wavelength “true” soft mode, it is nonlinearly
dependent on temperature below ≈150 K. As ω2

TO(q) ∝ 1
ε0

, the dielectric permittivity ε0 is
extracted from it, and is approximately 40% smaller than the long wavelength limit, but
still temperature dependent, typical for an almost ferroelectric compound [96].

From the calculated thermal average of the displacement-displacement correlation
function, a local dipole moment has been derived that shrinks with decreasing temperature
and increasing carrier concentration (Figure 12b). The zero temperature limit as a function
of the carrier concentration is shown in Figure 12c. As expected, it rapidly decreases
with increasing carrier concentration and approaches a constant value for small densities,
supporting the polar character of the matrix. The carrier concentration range is compatible
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with our estimates from the DFT calculations shown above. In the other extreme, when
n gets too small (<1016/cm3, see above), Cooper pairs cannot form any more. Thus,
superconductivity can be observed only in a concentration range around 1017–1019/cm3.
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Figure 12. Lattice dynamics calculation of STO. (a) Temperature and momentum q dependence of the
squared soft optic mode frequency ω2

TO of STO for different carrier concentrations, as indicated by
the color code in the figure; (b) temperature dependence of the local dipole moment p for different
carrier concentrations; and (c) dependence of the dipole moment p on the carrier concentration n for
T = 0 K [97].

The above analysis demonstrates that in the metallic and superconducting low carrier
density limit of STO, metallicity appears in filaments that coexist with elastically and polar-
distorted domains, where the latter shrink in size with increasing carrier density. These
have vanished beyond a critical carrier density and homogeneous non-superconducting
metal forms. Thus, the electronic band structure consists of localized insulating polaronic
bands attributed to the matrix, whereas Fermi liquid-type behavior must be present in the
filaments. With increasing carrier density, the localized band adopts dispersion from the
itinerant one, analogous to a steep band/flat band scenario [98] in which superconductivity
is a consequence of interband interactions.

4. Discussion

Our interdisciplinary analysis has shown that thermal reduction, which is frequently
used to generate metallicity or superconductivity in STO crystals, is limited to a network
of dislocations in an approximately 30 µm-thick surface region. Due to the preferential
removal of oxygen from the core of dislocations, their fragments with higher Ti oxides are
switched into metallic nano-conductors. The global effusion of oxygen during this process
is extraordinarily small (only 1013 effused oxygen atoms from a standard STO substrate
with a size of 1 × 1 × 0.05 cm3). In this way, the hierarchic network of dislocations adopts
metallic and superconducting properties. In the analysis of the nature of the transition into
the mentioned states, it is important to separate the moderate reduction, which allows us
to consider the system as STO + nano-filaments, from strong reduction (above 1000 ◦C)
or from thermal treatment in the presence of a getter, since these procedures change
the chemistry of the surface layer completely. For both types of reduction, one cannot
consider the crystal as a homogeneous object and determine parameters such as specific
resistance/conductance or the concentration of the carriers per volume as is frequently
performed in the literature, as one has to consider the dislocation-based filamentary nature
of the conductivity.
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In our paper, we have presented a broad spectrum of arguments supporting the idea
that the dislocations in a moderately thermally reduced STO crystal are the origin of metal-
licity and superconductivity. To emphasize the relation between superconductivity and the
evolution of filaments, we have compared thermally-reduced crystals with electro-reduced
ones. Our results have shown that the electro-reduction of STO at moderate temperatures
(T < 400 ◦C) induces superconductivity with a TC ≈ 0.2 K, which is significantly higher than
that of thermally-reduced STO (TC ≈ 0.09 K). During electro-reduction, a dislocation-based
network of filaments is generated (Figure 13a), which is more bundled (see Figure 9c)
than for the thermally reduced case (see Figure 6b–d) and can more effectively channel
the current flow via formation of a metallic short circuit. Our LC-AFM investigations
proved that the conductivity of the filaments is orders of magnitude higher than that of the
surrounding matrix (Figure 13b,c). We present a nanoscale view on the superconductivity
of electro-reduced STO regarding the doped dislocations as metallic filaments, whose cores
have similar properties to Ti2O3 or TiO [69,72,73]. These dislocation-based filaments are
connected among each other due to the invariance of the Burgers vector [99] and thus form
a metallic network in the dielectric insulating STO matrix. Although low Ti oxides are
superconducting per se, their presence in the core of the dislocations alone cannot explain
the superconductivity enhancement in dislocation-rich STO. The radius of the dislocation
cores equals 1–2 nm [31] and is much smaller than the correlation length of Cooper pairs
expected in bulk Ti/TiO materials according to the Bardeen–Cooper–Schrieffer (BCS) the-
ory [83], and smaller than the coherence length determined for our electro-reduced crystal
by the upper critical field (40–50 nm).
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Figure 13. Schematic picture of the dislocation-based filamentary superconductivity in electro-
reduced STO. (a) Arrangement of bundled metallic dislocations according to LC-AFM and etch-pit
studies; (b) LC-AFM line profile across the dislocation cores, revealing that they have an extremely
high conductivity; (c) LC-AFM line profile in the region without electro-reduced dislocations reveal-
ing insulating behavior; (d) illustration of the proposed coupling mechanism of pairs of d1 (and,
possibly, d2) electrons in metallic dislocations mediated by a polar nano-regions and the spontaneous
polarization (here, flexo or ferroelectric polarization) between.

We conclude that superconductivity is related to a cooperative phenomenon involving
the metallic cores of dislocations and the polar regions between them. As schematically
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illustrated in Figure 13d, the d electrons in the metallic dislocations are coupled by the
polar properties of the STO matrix. In the polar region between the nano-filaments, a static
spontaneous polarization (green arrows in Figure 13d) and a dynamic polarization (golden
spheres in Figure 13d) are present. Our DFT simulations indicate that the spontaneous
polarization in the STO matrix coexists with metallic filaments. However, the electrons
provided by the filaments lightly dope the surrounding matrix, initializing interband in-
teractions. The possibility of generating a dynamic polarization in nano-regions at such a
doping level was confirmed by lattice dynamic calculations. In other words, the proximity
of the metallic filaments does not eliminate the polar character of the STO matrix, but
provides the charge carriers necessary for superconductivity. Accordingly, the interaction
of the polarization with the d1 electronic states in different filaments of a bundle constitutes
the glue of the Cooper pairs and thus leads to local superconductivity. The determined
coherence length perfectly correlates with the average radius of the bundles formed by
electro-degradation. Self-doped STO is highly inhomogeneous with coexisting charge-rich
and charge-poor regions, i.e., a material in which metallicity and polar properties are inti-
mately entangled. Although the details of the coupling mechanism of this unconventional
superconductor remain to be discovered in the future, we have demonstrated that the two
prerequisites for superconductivity, namely an appropriate charge carrier density and a
local polarization, are present within the bundles, thus promising a route for the artificial
local embedding of superconductivity in insulating polar materials.
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