001033721 001__ 1033721
001033721 005__ 20250610131452.0
001033721 0247_ $$2doi$$a10.1177/10943420241303163
001033721 0247_ $$2ISSN$$a1094-3420
001033721 0247_ $$2ISSN$$a1078-3482
001033721 0247_ $$2ISSN$$a1741-2846
001033721 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06575
001033721 0247_ $$2WOS$$aWOS:001366656300001
001033721 037__ $$aFZJ-2024-06575
001033721 041__ $$aEnglish
001033721 082__ $$a004
001033721 1001_ $$00000-0003-3374-8093$$aKarp, Martin$$b0$$eCorresponding author
001033721 245__ $$aExperience and analysis of scalable high-fidelity computational fluid dynamics on modular supercomputing architectures
001033721 260__ $$aThousand Oaks, Calif.$$bSage Science Press$$c2025
001033721 3367_ $$2DRIVER$$aarticle
001033721 3367_ $$2DataCite$$aOutput Types/Journal article
001033721 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1747042728_23352
001033721 3367_ $$2BibTeX$$aARTICLE
001033721 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001033721 3367_ $$00$$2EndNote$$aJournal Article
001033721 520__ $$aThe never-ending computational demand from simulations of turbulence makes computational fluid dynamics (CFD) a prime application use case for current and future exascale systems. High-order finite element methods, such as the spectral element method, have been gaining traction as they offer high performance on both multicore CPUs and modern GPU-based accelerators. In this work, we assess how high-fidelity CFD using the spectral element method can exploit the modular supercomputing architecture at scale through domain partitioning, where the computational domain is split between a Booster module powered by GPUs and a Cluster module with conventional CPU nodes. We investigate several different flow cases and computer systems based on the Modular Supercomputing Architecture (MSA). We observe that for our simulations, the communication overhead and load balancing issues incurred by incorporating different computing architectures are seldom worthwhile, especially when I/O is also considered, but when the simulation at hand requires more than the combined global memory on the GPUs, utilizing additional CPUs to increase the available memory can be fruitful. We support our results with a simple performance model to assess when running across modules might be beneficial. As MSA is becoming more widespread and efforts to increase system utilization are growing more important our results give insight into when and how a monolithic application can utilize and spread out to more than one module and obtain a faster time to solution.
001033721 536__ $$0G:(DE-HGF)POF4-5122$$a5122 - Future Computing & Big Data Systems (POF4-512)$$cPOF4-512$$fPOF IV$$x0
001033721 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
001033721 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001033721 7001_ $$0P:(DE-Juel1)142361$$aSuarez, Estela$$b1$$ufzj
001033721 7001_ $$0P:(DE-Juel1)132189$$aMeinke, Jan H$$b2$$ufzj
001033721 7001_ $$0P:(DE-HGF)0$$aAndersson, Måns I$$b3
001033721 7001_ $$00000-0001-9627-5903$$aSchlatter, Philipp$$b4
001033721 7001_ $$0P:(DE-HGF)0$$aMarkidis, Stefano$$b5
001033721 7001_ $$00000-0002-5020-1631$$aJansson, Niclas$$b6
001033721 773__ $$0PERI:(DE-600)2017480-9$$a10.1177/10943420241303163$$gp. 10943420241303163$$n3$$p329-344$$tThe international journal of high performance computing applications$$v39$$x1741-2846$$y2025
001033721 8564_ $$uhttps://juser.fz-juelich.de/record/1033721/files/karp-et-al-2024-experience-and-analysis-of-scalable-high-fidelity-computational-fluid-dynamics-on-modular.pdf$$yOpenAccess
001033721 909CO $$ooai:juser.fz-juelich.de:1033721$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001033721 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142361$$aForschungszentrum Jülich$$b1$$kFZJ
001033721 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132189$$aForschungszentrum Jülich$$b2$$kFZJ
001033721 9131_ $$0G:(DE-HGF)POF4-512$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5122$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vSupercomputing & Big Data Infrastructures$$x0
001033721 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
001033721 9141_ $$y2025
001033721 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
001033721 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
001033721 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-26
001033721 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001033721 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
001033721 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HIGH PERFORM C : 2022$$d2023-08-26
001033721 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
001033721 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
001033721 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033721 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
001033721 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-26$$wger
001033721 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
001033721 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
001033721 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
001033721 920__ $$lyes
001033721 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001033721 980__ $$ajournal
001033721 980__ $$aVDB
001033721 980__ $$aUNRESTRICTED
001033721 980__ $$aI:(DE-Juel1)JSC-20090406
001033721 9801_ $$aFullTexts