001     1033721
005     20250610131452.0
024 7 _ |a 10.1177/10943420241303163
|2 doi
024 7 _ |a 1094-3420
|2 ISSN
024 7 _ |a 1078-3482
|2 ISSN
024 7 _ |a 1741-2846
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-06575
|2 datacite_doi
024 7 _ |a WOS:001366656300001
|2 WOS
037 _ _ |a FZJ-2024-06575
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Karp, Martin
|0 0000-0003-3374-8093
|b 0
|e Corresponding author
245 _ _ |a Experience and analysis of scalable high-fidelity computational fluid dynamics on modular supercomputing architectures
260 _ _ |a Thousand Oaks, Calif.
|c 2025
|b Sage Science Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747042728_23352
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The never-ending computational demand from simulations of turbulence makes computational fluid dynamics (CFD) a prime application use case for current and future exascale systems. High-order finite element methods, such as the spectral element method, have been gaining traction as they offer high performance on both multicore CPUs and modern GPU-based accelerators. In this work, we assess how high-fidelity CFD using the spectral element method can exploit the modular supercomputing architecture at scale through domain partitioning, where the computational domain is split between a Booster module powered by GPUs and a Cluster module with conventional CPU nodes. We investigate several different flow cases and computer systems based on the Modular Supercomputing Architecture (MSA). We observe that for our simulations, the communication overhead and load balancing issues incurred by incorporating different computing architectures are seldom worthwhile, especially when I/O is also considered, but when the simulation at hand requires more than the combined global memory on the GPUs, utilizing additional CPUs to increase the available memory can be fruitful. We support our results with a simple performance model to assess when running across modules might be beneficial. As MSA is becoming more widespread and efforts to increase system utilization are growing more important our results give insight into when and how a monolithic application can utilize and spread out to more than one module and obtain a faster time to solution.
536 _ _ |a 5122 - Future Computing & Big Data Systems (POF4-512)
|0 G:(DE-HGF)POF4-5122
|c POF4-512
|f POF IV
|x 0
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Suarez, Estela
|0 P:(DE-Juel1)142361
|b 1
|u fzj
700 1 _ |a Meinke, Jan H
|0 P:(DE-Juel1)132189
|b 2
|u fzj
700 1 _ |a Andersson, Måns I
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schlatter, Philipp
|0 0000-0001-9627-5903
|b 4
700 1 _ |a Markidis, Stefano
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Jansson, Niclas
|0 0000-0002-5020-1631
|b 6
773 _ _ |a 10.1177/10943420241303163
|g p. 10943420241303163
|0 PERI:(DE-600)2017480-9
|n 3
|p 329-344
|t The international journal of high performance computing applications
|v 39
|y 2025
|x 1741-2846
856 4 _ |u https://juser.fz-juelich.de/record/1033721/files/karp-et-al-2024-experience-and-analysis-of-scalable-high-fidelity-computational-fluid-dynamics-on-modular.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1033721
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)142361
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132189
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-512
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Supercomputing & Big Data Infrastructures
|9 G:(DE-HGF)POF4-5122
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HIGH PERFORM C : 2022
|d 2023-08-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-26
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-08-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21