
Research Paper

The International Journal of High
Performance Computing Applications
2025, Vol. 39(3) 329–344
© The Author(s) 2024

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420241303163
journals.sagepub.com/home/hpc

Experience and analysis of scalable
high-fidelity computational fluid dynamics
on modular supercomputing architectures

Martin Karp1, Estela Suarez2,3, Jan H Meinke2,
Måns I Andersson4, Philipp Schlatter1,5, Stefano Markidis4 and
Niclas Jansson6

Abstract
The never-ending computational demand from simulations of turbulence makes computational fluid dynamics (CFD) a
prime application use case for current and future exascale systems. High-order finite element methods, such as the spectral
element method, have been gaining traction as they offer high performance on both multicore CPUs and modern GPU-
based accelerators. In this work, we assess how high-fidelity CFD using the spectral element method can exploit the
modular supercomputing architecture at scale through domain partitioning, where the computational domain is split between a
Booster module powered by GPUs and a Cluster module with conventional CPU nodes. We investigate several different flow
cases and computer systems based on the Modular Supercomputing Architecture (MSA). We observe that for our simulations,
the communication overhead and load balancing issues incurred by incorporating different computing architectures are seldom
worthwhile, especially when I/O is also considered, but when the simulation at hand requires more than the combined global
memory on the GPUs, utilizing additional CPUs to increase the available memory can be fruitful. We support our results with a
simple performance model to assess when running across modules might be beneficial. As MSA is becoming more widespread
and efforts to increase system utilization are growing more important our results give insight into when and how a monolithic
application can utilize and spread out to more than one module and obtain a faster time to solution.

Keywords
Computational fluid dynamics, modular supercomputing architecture, HPC

1. Introduction

Computational fluid dynamics (CFD) impacts many fields
ranging from medicine to aeronautics and is one of the
largest application domains in modern HPC systems
(Slotnick et al., 2014). Designing efficient CFD software
tailored to the most powerful supercomputers is an active
area of research and developing methods and algorithms
that map to upcoming heterogeneous hardware is growing
ever more important (Abdelfattah et al., 2021).

The modular supercomputing architecture (MSA) is
uniquely positioned as one of the main enabling technol-
ogies for the European exascale computer ecosystem. It
combines different modules tailored for specific sets of
algorithms and applications connected with a high-
performance interconnect. This type of supercomputing
cluster provides a dynamic and flexible system for a wide
range of applications and use cases (Kreuzer et al., 2021;

Suarez et al., 2019). It has already been deployed in both
the JURECA and JUWELS supercomputers at Jülich

1FLOW, Engineering Mechanics, KTH Royal Institute of Technology,
Stockholm, Sweden
2Jülich Supercomputing Centre, Institute for Advanced Simulations,
Forschungszentrum Jülich GmbH, Jülich, Germany
3Institute of Computer Science, University of Bonn, Bonn, Germany
4Department of Computer Science, KTH Royal Institute of Technology,
Stockholm, Sweden
5Institute of Fluid Mechanics (LSTM), Friedrich-Alexander Universität
(FAU) Erlangen-Nürnberg, Erlangen, Germany
6PDC Centre for High Performance Computing, KTH Royal Institute of
Technology, Stockholm, Sweden

Corresponding author:
Martin Karp, School of Engineering Sciences, KTH Royal Institute of
Technology, Osquars Backe 18, 100 44 Stockholm, Sweden.
Email: makarp@kth.se

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10943420241303163
https://journals.sagepub.com/home/hpc
https://orcid.org/0000-0003-3374-8093
https://orcid.org/0000-0001-9627-5903
https://orcid.org/0000-0002-5020-1631
mailto:makarp@kth.se
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420241303163&domain=pdf&date_stamp=2024-11-28

Supercomputing Centre (JSC) and is posed to be the
computing architecture for a future exascale computer
system at JSC (Krause 2019; Krause and Thörnig 2018).
However, applications need to be adapted to take advantage
of more than one module at a time.

Through dedicated efforts, MSA has already been ac-
commodated in several applications such as multiphysics or
multiscale applications that can efficiently run large well-
defined code sections on different computing modules
(Kreuzer et al., 2021; Markov et al., 2019; Riedel et al.,
2021). By splitting the code execution and running large
parallel regions on the Booster modules dedicated to energy-
efficient high-throughput processing units such as GPUs and
running portions with low scalability on the cluster module
focused on providing low latency and high frequency, a large
improvement in the performance of the solver has been
observed (Kreuzer et al., 2018). However, some application
domains are dominated by large homogeneous “monolithic”
solvers where each process executes the same operations and
only the computational domain is partitioned.

The benefits of MSA for these types of applications,
which occur in various domains revolving around solving
one large partial differential equation such as solid me-
chanics or fluid dynamics, are less clear-cut. On a large
scale, when the problem will not fit on any one module, it
comes down to distributing the work between different
modules appropriately. For smaller problems, it instead
becomes an issue of choosing the most suitable module to
execute the computation on. As flexible job scheduling is
becoming more important to increase system utilization,
understanding the performance implications of using
multiple modules for these types of applications is also
becoming more relevant (Arima et al., 2022). One aspect of
this work is to assess when utilizing several modules can
reduce the time to solution for scalable monolithic solvers.

In this work, we evaluate how large-scale high-fidelity
computational fluid dynamics simulations based on solving
the Navier-Stokes equations can utilize different MSA
modules at the same time and how workloads of different
sizes are best run on a heterogeneous MSA system. High-
fidelity CFD makes up a large share of the computational
load on many supercomputers, and due to the demand for
more grid points and higher resolution, there is a never-
ending need for computational resources. This approach
differs from lower-fidelity models such as the Reynolds-
averaged Navier-Stokes or other approaches more suited for
complex geometries such as Lattice-Boltzman, where the
Boltzmann equations are solved instead. We use a CFD
solver that performs well on both CPUs and GPUs com-
bined with a simple performance model to analyze and
understand how we distribute a workload and execute
computations on two different MSA systems, the JUWELS
cluster and Booster modules as well as the DEEP cluster and
booster modules. We claim the following contributions:

· We empirically compare different flow configurations
across different GPU/CPU configurations, utilizing
not only GPUs and CPUs but also mixing the two
architectures on MSA. We also evaluate the impact of
I/O on the load balance.

· We employ a simple performance model to reason
about our results and evaluate the performance po-
tential by running on multiple architectures.

· When the simulation cannot fit on the GPU module
only, by using both GPU and CPU modules, we
observe up to 2.7× improved performance than only
using the CPU module on the DEEP prototype
system. We also compare the performance between
the JUWELS Booster and LUMI-G module.

2. Related work

This work relates both to various applications utilizing
multiple modules on MSA, as well as CFD in general on
heterogeneous computer architectures. While most efforts
for CFD have been spent on optimizing the code for systems
where the nodes internally are heterogeneous, our work
explores how a solver optimized for different types of nodes
can run using multiple compute modules with different node
architectures by partitioning the computational domain
between the different modules.

2.1. CFD on heterogenous architectures

In the era of heterogeneous platforms, high-order methods
for CFD have been gaining increasing amounts of interest
for high-fidelity CFD due to their accuracy, structure, and
relatively high number of floating point operations per grid
point which enable them to efficiently utilize GPUs in
addition to multicore CPUs (Abdelfattah et al., 2021). In the
development of these methods, the focus has been on
offloading the computation to the accelerator and limiting
the data exchange from the host to the device as far as
possible.

In this paper, to assess the performance of mixing dif-
ferent architectures, we consider a spectral element solver,
Neko, running on nodes composed of CPUs as well as nodes
powered primarily by GPUs with a host CPU. Neko uses
modern Fortran together with hand-written CUDA/HIP
kernels behind a device abstraction layer to provide tuned
implementations for all the different architectures (Jansson
et al., 2023, 2024; Karp et al., 2023). While there are many
other methods to carry out fluid simulations, we focus on the
Neko application, which integrates the Navier-Stokes
equations in time and is able to efficiently scale using
domain decomposition. CFD can take many forms on
heterogeneous computer architectures, ranging from com-
pressible solvers (Witherden et al., 2014) to Lattice-
Boltzman methods (Calore et al., 2019) and many others

330 The International Journal of High Performance Computing Applications 39(3)

(Niemeyer and Sung, 2014). However, not all solvers scale
to the same extent as Neko and can utilize different com-
puter architectures at a high parallel efficiency. For our work
on high-fidelity CFD running on large-scale heterogeneous
architectures, the spectral element method (SEM) is a good
representative, and two SEM codes were because of this
recently considered for the Gordon-Ball prize (Jansson
et al., 2023; Merzari et al., 2023).

There are many approaches targeting CFD, utilizing both
CPUs and GPUs, as there are also different ways of utilizing
mixed CPU-GPU nodes. Within a node, some approaches
try to either offload certain tasks to the host CPU (Borrell
et al., 2020; Calore et al., 2019), or partition the compu-
tational domain between computing devices depending on
their respective performance (AlOnazi et al., 2015; Liu
et al., 2016; Zhong et al., 2014). In our work, we are
concerned with the second approach, but with the difference
that we split the domain between two different computer
modules. The works by Zhong et al. (2014); AlOnazi et al.
(2015) indicate that partitioning the domain between dif-
ferent computing devices can lead to improved perfor-
mance, but this is in practice not done in many large-scale
CFD solvers (Abdelfattah et al., 2021; Kolev et al., 2021)
because data movement between the CPU and GPU quickly
becomes the limiting factor. Our work aims to assess why
and when a CFD application should consider using a
mixture of different computing modules, assuming optimal
load balancing. We are the first, to our knowledge, to study
the performance of a CFD code for large scale production
runs on a mix of compute modules with hundreds of GPUs
or thousands of cores. The motivation of this work is first to
enable running large-scale monolithic solvers such as Neko
across compute modules when the HPC cluster is un-
derutilized, and second to determine from the application
point of view when mixing modules is compelling for actual
production cases.

2.2. Applications on MSA

Different applications have been tested on the MSA. In
particular, large performance improvements have been
made possible for applications employing coarse-grained
parallelism, in which different parts of the code benefit from
different computer architectures and only limited commu-
nication between the compute modules is necessary. No-
table examples are the implicit particle in cell method in
xPIC by Kreuzer et al. (2018) and machine learning Riedel
et al. (2021). Further approaches across a wide range of
applications reported in Kreuzer et al. (2021). However, as
mentioned, the primary focus has been on dedicating
specific computational resources to code parts with very
different computational characteristics.

Our code, on the other hand, simulates an incompressible
flow that lacks coarse-grained isolated tasks; instead, we

partition the domain between different computing devices.
Going forward we see an opportunity for workflows where
several coarse-grained tasks are executed in parallel, in
addition to the actual simulation. One such approach, where
in situ data analysis is executed in parallel to the Neko
simulation is suggested by Ju et al. (2023). While we focus
on domain-partioning in this paper, considering such ap-
proaches, and for example running the in situ data analysis
on a different module than the simulation is a natural ex-
tension to this work.

3. Computational fluid dynamics in HPC

Fluid dynamics has been one of the focus areas of high-
performance computing since its conception. Due to the vast
array of application areas such as medicine, aerodynamics,
and weather and climate models, detailed simulations of
flows are of large scientific interest. High-fidelity simula-
tions of the turbulent Navier-Stokes equations require tre-
mendous computing power and a very fine resolution
making them prime candidates for taking advantage of
large, modern HPC systems. In this work, we focus on the
integration in time of the non-dimensional incompressible
Navier-Stokes, described by

= � v ¼ 0,

∂v
∂t

þ ðv � =Þv ¼ �=pþ 1

Re
=2vþ F,

(1)

where v is the instantaneous velocity field, p the pressure, Re
is the non-dimensional Reynolds number and F an external
forcing. The Reynolds number is defined as Re = LU/ν
where U is a characteristic velocity, L is a suitable length
scale, and ν is the kinematic viscosity. The Reynolds
number is important in this context as a single direct nu-
merical simulation of these equations, where all the scales of
the flow are resolved, requires a grid that scales asOðRe9=4Þ
for isotropic, homogeneous turbulence. This means that
direct numerical simulation at even moderately high Rey-
nolds numbers is extremely expensive. While there are
many other approaches to CFD, our focus is on the inte-
gration of the Navier-Stokes equations in time with low
numerical dispersion and high scalability. In our context,
methods such as SEM are the prime candidates (Deville
et al., 2002).

3.1. Neko

To assess how high-fidelity CFD simulations can be effi-
ciently performed on varying computer hardware we will be
utilizing Neko (Jansson et al., 2024), a Navier-Stokes solver
based on the spectral element method. It has its roots in the
long-running solver, Nek5000 (Fischer et al., 2008), which
has scaled to over a million MPI ranks and was awarded the

Karp et al. 331

Gordon Bell price in 1999 (Tufo and Fischer, 1999). Neko
provides the same excellent scaling capabilities as
Nek5000 onmodern multicore systems and adds support for
more recent computer architectures such as GPUs (Karp
et al., 2023). This makes it a suitable candidate to assess
how we can leverage a wide range of different computer
architectures for large CFD simulations.

While several other methods are used for CFD, not all
can utilize GPUs efficiently or scale to a large number of
MPI ranks. Oftentimes a low operational intensity, the
number of floating operations executed per byte, and the
prevalence of complex global communication patterns
make it difficult to utilize massively parallel architectures
such as GPUs. Our choice of discretization and solver re-
lates to this: the spectral element method has shown major
promise in enabling CFD simulation at the exascale due to
its high-order and local structure, enabling efficient utili-
zation of both CPUs and GPUs (Abdelfattah et al., 2021;
Fischer et al., 2020).

Due to the globally unstructured but locally structured nature
of the spectral element method, only unit-depth communication
is necessary in a so-called gather-scatter phase (Deville et al.,
2002). All other operations can be performed in an element-by-
element or matrix-free fashion, which yields a high level of
parallelism and utilizes both multicore CPUs and GPUs effi-
ciently. At the heart of the method, similar to many other CFD
solvers, preconditioned Krylov subspace methods are used to
solve linear systems on the form Ax = b for each time step. The
exact splitting of the velocity and pressure follows a similar
splitting as outlined by Karniadakis et al. (1991) and described
for Neko in Karp et al. (2023). For the resulting linear systems,
we use restarted GMRES for the pressure solves with a hybrid-
Schwarz multigrid preconditioner, while for the velocity we use
CG together with a block-Jacobi preconditioner. While there are
other pipelined Krylov methods and implementations available
in Neko (Karp et al., 2022), for this study we evaluate the
original and most common configuration.

In the spectral element method, the computational domain
is split into E non-overlapping hexahedral elements. These
parts of the domain are then distributed among the MPI ranks
and it is through this domain partitioning that the spectral
element method leverages the parallelism of modern com-
puting architectures. The flow field is represented on the
reference element with high-order polynomial basis functions
of order N, collocated on the Gauss-Lobatto-Legendre points
and is desrbied extensively in Deville et al. (2002). The

computational load is identical for each element. The only
asymmetry that is introduced is through the gather-scatter
operation, which depends on the geometric distribution of the
elements across the MPI ranks.

3.2. Flow cases under consideration

With our focus on high-fidelity simulations of turbulent
flow, we consider three different simulation cases of varying
sizes.We summarize the details of each flow case in Table 1.
We use a polynomial order ofN = 7 as most simulation cases
use a polynomial order between 5 and 11.

3.2.1. Turbulent pipe. Turbulent flow in a pipe is a canonical
flow case, which occurs in biological applications such as
blood flow, and industrial applications such as gas and oil
pipelines. One case that has been studied extensively, is the
flow in a turbulent pipe at bulk Reynolds number Reb = 5300
based on the cylinder diameter and bulk flow velocityUb. We
consider this case as a smaller simulation case, only requiring
a few nodes to efficiently compute. The exact details of the
flow case are described by El Khoury et al. (2013).

3.2.2. Taylor-green vortex. The Taylor-Green vortex (TGV)
has been studied extensively in order to assess the accuracy
and convergence of CFD solvers. In the TGV case, the
Reynolds number is uniquely defined by the viscosity and in
particular, TGVat Re = 1600 has been used previously (Van
Rees et al., 2011). We use this case to assess the scaling
behavior of a medium-sized workload requiring a moderate
number of nodes to execute efficiently.

3.2.3. Rayleigh-Bénard convection. For our largest case we
consider Rayleigh-Bénard convection (RBC), which simulates
the same physical behavior that occurs in the sun and many
industrial applications (Iyer et al., 2020) where the increased
buoyancy of a hotter fluid drives convective turbulence as
shown in Figure 1. In this work, we consider a cubic domain
with an aspect ratio of 1, periodic sides, and walls on the top
and bottom where the bottom wall has a temperature of 1. We
perform this simulation at a Rayleigh number of 1011 and a
Prandtl number of 1. Our simulation follows a similar setup to
the cubic case in Kooij et al. (2018), but at a higher Rayleigh
number. As this case is rather large we want to consider how to
utilize several modules when onemodulemight be too small to
fit the entire problem.

Table 1. Flow cases under consideration. Polynomial order N, number of elements E, and total number of unique grid points, n.

Case N E n = EN3

Turbulent pipe Reb = 5300 7 36480 12512640
Taylor-green vortex Re = 1600 7 262144 89915392
Rayleigh-Bénard convection, Ra = 1011 7 2097152 719323136

332 The International Journal of High Performance Computing Applications 39(3)

4. Performance analysis

In this section, we perform a performance analysis where we
relate the performance and memory capacity of different
computing devices to reason around when and how it might
be beneficial to split a homogeneous problem, where each
device performs the same task on different parts of the
problem, across different computing devices and super-
computer modules. We first develop a simple model to
reason around the performance of mixing different com-
puting devices and then go on to identify different domains
of operation for a homogeneous workload, in what domains
our performance model will work well, and what perfor-
mance improvements one can expect in the best case by
using different compute modules.

4.1. Performance model for mixing different
computing devices

We develop a simple performance model for computations
revolving around solving one large system by splitting a
homogeneous computational cost (such as the computa-
tional domain) between different computing units (such as
GPUs and CPUs). The aim of this model is to provide an
optimistic indication of when using several computing
modules might be beneficial, not to predict the exact run
time of an application. The model is similar to what was
originally proposed by Amdahl and similar to what has been
used previously to discuss the performance and scalability
of PDE solvers (Fischer, 2015).

We denote the execution time of a simulation with T and
divide it into two non-overlapping sections:

T ¼ Ta þ Tc, (2)

where Ta is the local time dedicated to arithmetic operations
and loads and stores to and from global memory (DRAM or
high bandwidth memory (HBM)), while the communication
time Tc is the latency portion of the run time that is used for
communication between different MPI ranks and inherent

latency of the computing devices. We also introduce the
computational cost or work C for a given workload which is
then divided among all computing devices C ¼ P

si2SCi.
Each computing device si 2 S, where S is the set of computing
devices, then has a performanceP (si,Ci) given that computing
device si is computing a cost of Ci. The units for C, P, depend
on the problem, but in our case the cost is related to the
computation of one time step, meaning that the cost is given in
time steps and the performance in time steps per second. For a
given processing device si computing a cost Ci we have that

Taðsi,CiÞ ¼ Ci

Pðsi,CiÞ: (3)

What we would like to obtain is the minimal run time
overall computing devices, and hence solve the minimi-
zation problem

minimize
Ci

T ¼ max
si2S

ðTaðsi,CiÞ þ TcðsiÞÞ

such that: Taðsi,CiÞ ¼ Ci

Pðsi,CiÞ
C ¼

X

si2S
Ci

Ci ≤CmaxðsiÞ, si 2 S

(4)

where we introduce the capacity of computing device si as
Cmax(si), which is the largest cost a given computing device can
compute, often limited by for example DRAMorHBMmemory
capacity. For our model, we focus on finding a lower bound on
the run time and comparing the results of our performance
measurements to this optimistic lower bound. To do this, we start
by observing thatT≥ Ta and as suchwe can trivially lower bound
the performance and run time for the computing device as

T ≥
Ci

Pðsi,CiÞ ≥
Ci

PoptðsiÞ (5)

where we introduce Popt(si), which corresponds to the
highest performance achievable for processing device si.

Figure 1. Visualizations of the three different cases, with red being high and blue being a lower value. To the left is the velocity magnitude
in a cross-section of the pipe, in the middle is the pressure field in TGV and to the right, we show the temperature field in turbulent
Rayleigh-Bénard convection.

Karp et al. 333

With this information, we can provide a lower bound on the
lowest possible run time Tmin as

Tmin ≥ max
si2S

Ci

PoptðsiÞ (6)

subject to the constraint that C ¼ P
si2SCi. For the un-

constrained case, when all computing devices have enough
memory to fit their part of the cost C, this reduces to

Tmin ≥
CP

si2SPoptðsiÞ (7)

and the relation Ci/Popt(si) = Cj/Popt(sj), "si, sj 2 S holds. In
the other case, we have that there exists some computing
devices s.t.

CmaxðsiÞ
�
PoptðsiÞ<Cj

�
PoptðsjÞ, si, sj 2 S

and the optimization problem does not necessarily have a
simple solution. As we consider only two different com-
puting devices in this work (one kind of GPUs and CPUs
used at the same time), solving this problem is not an issue,
but if the performance P (si) would vary significantly among
the computing devices si 2 S, the number of constraints
would increase considerably. To summarize, our modeled
lowest possible run time of our mixed GPU/CPU runs is
computed as the following:

If
Ci

PoptðsiÞ ¼
Cj

PoptðsjÞ, "si, sj 2 S,

C ¼
X

si2S
Ci,

Ci ≤CmaxðsiÞ, si 2 S,

then: Tmin ¼ CP
si2SPoptðsiÞ

Else:

minimize
Ci

Tmin ¼ max
si2S

Ci

PoptðsiÞ
such that:C ¼

X

si2S
Ci

Ci ≤CmaxðsiÞ, si 2 S

(8)

The best case is that the performance of two computing
devices is additive if they can fit the entire problem. Another
takeaway from this model is that we can achieve significant
superlinear speedup when a single module of computing
devices cannot hold the entire computational cost and we
are limited by the capacity of the devices. Increasing the
capacity then effectively yields a superlinear speedup until
the modules can hold enough of the computational work. We
illustrate the meaning of our notation in Figure 2, for a simple
case with two different computing devices, s1, s2. Given the
single node performance shown in Figure 2(a), the modeled
performance as we scale is shown in Figure 2(b).

For Neko, we let the cost C be a linear function of the
number of elements, Ei, on a computing device and model
the performance according to equation (8). As such, finding
Tmin can be done through a parameter search where we load
balance the elements between the different computing de-
vices. The best performance Popt(si) for the GPUs and CPUs
is approximated as the best-measured performance for a
given flow case, using only CPUs/GPUs. We visualize the
modeled time with a solid line in our experimental results
along with our mixed GPU/CPU runs, similar to the
modeled strong scaling in Figure 2. A similar approach can
be applied to any other solver solving one large problem
through domain partitioning.

4.2. Operation domains

An aspect of the modeled time that we propose is that we do
not consider the communication time Tc, but we assume that

Figure 2. Illustration of the performance model for two different
computing devices s1, s2 with different performance
characteristics. We denote the modeled time as described in (8)
as Model 1 s1: 1 s2 and we model the best achievable performance
based on Popt(s1), Popt(s2) with a mix of 1:1, s1, s2 devices. The
strong scaling performance for |S| computing devices with a
performance based on Figure 2(a) is shown as in Figure 2(b).

334 The International Journal of High Performance Computing Applications 39(3)

the whole problem scales perfectly. This is most often not
the case, but it depends strongly on the problem size, and
thus the cost per computing device Ci which relates to the
relation between Ta and Tc. As such, we introduce three
different domains of operation for an application with
different performance characteristics, where the computa-
tion is either dominated by Ta or Tc, and discuss where
running on a mix of computing devices might be beneficial.

Ta ≤ Tc, Communication domain

Ta > Tc, Scaling domain

Ta � Tc, C ≈Cmax, Extreme scaling domain:

(9)

In the communication domain, it does not make sense to
add computational resources, as Tc in general increases with
the number of processing devices, and we are already
limited by communication (latency). In this domain, CPUs
may have an edge due to their low latency concerning
memory and communication and high clock speeds. This is
the case for many applications, which do not have the
opportunity to scale on GPUs or to a large number of nodes
and this is the domain the Cluster module caters to.

In the scaling domain, the total amount of work is still the
dominating factor for the application performance, hence
adding more compute units would be beneficial. However,
in this domain, it is still not evident that we will easily be
able to balance the different computing units in such a way
that we get a reduction in run time. However, as we are
primarily limited by computational power, throughput-
oriented devices such as GPUs tend to be the most per-
formant and power-efficient option, which is the idea behind
the Booster module (Kreuzer et al., 2021).

In the extreme scale regime, we are considering examples
in which the computational cost C is close to the capacity
Cmax of the available resources and might not fit into any
single compute module. In this situation, the ability to use
several modules to fit a large case becomes crucial, which
justifies the potential loss in workload balance. The total
performance, assuming Tc is small, will overall be additive
and follow our performance model, and the major appeal is
that cases that are impossible to run otherwise will now be
possible. Overall, these cases would then not treat the Cluster
and Booster modules as two different modules, but rather as
two pillars to compute these extremely large systems. This
domain most closely correlates with our proposed perfor-
mance model, while the model would provide optimistic
performance bounds in the first two domains.

Neko, similarly to many flow solvers is primarily
memory bound for the computational cost C, while the
communication overhead, Tc, can be primarily attributed to
the gather-scatter kernel. This is consistent with previous
works where the gather-scatter kernel has shown to be the
main performance bottleneck of SEM as one approaches the

strong scaling limit, and a heavily optimized version is in-
tegral for high performance (Ivanov et al., 2015). The gather-
scatter kernel is called repeatedly for each operator evaluation
and has a strong dependence on the distribution of the work
among the available ranks as it performs the unstructured
communication among MPI ranks and elements.

5. Experimental setup

In this work, our primary experimental platforms are based on
themodular supercomputing architecture (MSA) (Suarez et al.,
2019).MSAgroups different kinds of compute nodes into sub-
clusters (modules) that are internally rather homogeneous. The
node architecture of eachmodule targets the needs of a specific
kind of application. Depending on the required network to-
pology new modules can be added and extended easily.

An example is the JUWELS supercomputer—one of the
largest systems in Europe—at the Jülich Supercomputing
Center. It currently accommodates two different computing
modules (Cluster and Booster) that share a single high-
performance interconnect. With this design, it is possible to
dynamically map applications with vastly different per-
formance characteristics to the modules and accommodate a
wide range of use cases. The JUWELS Cluster is a CPU-
based HPC system, good for applications (or parts of them)
that are not ready to run on GPUs and/or require high single-
thread performance. The Booster module utilizes GPUs and
is used by the most scalable applications with high-
performance demands.

The DEEP system, a prototype for the modular super-
computing architecture provides in addition to a cluster and a
booster module, a module dedicated to data analytics. This
module is equippedwith large, fast, storage aswell as GPUs and
FPGAs for extensive data processing. By sharing the same
interconnect it is possible to assign different tasks to themodules
that are executed in situ while the simulation is running.

Aside from the two systems just described, we evaluate
the LUMI supercomputer at CSC in Finland. While LUMI
shares a similar modular architecture to the systems at JSC,
with different modules for CPU and GPUs, the vast amount
of the resources is dedicated to the GPU/Booster module
LUMI-G, which we will consider. We focus on the three
production use cases described in subsection to capture
actual production usage and do not evaluate any proxy app
or similar, but the whole application. For all measurements
we use a shaded area to indicate the 95% confidence interval
for the time of any time step of the simulation, assuming that
the time per time step follows a normal distribution around
the sample mean. We use the last 100 time steps of each
simulation to collect our performance measurements.

We provide an overview of the different computational
setups and the two modules of each that we use in Table 2. A
major difference from LUMI-G as compared to the Booster
module of JUWELS is that the network interface cards (NIC)

Karp et al. 335

are mounted directly on the GPUs, essentially offloading also
the communication in addition to the computation to the
GPU.On JUWELS, in comparison, theMellanoxHDR200 is
connected to the GPUs through a PCIe switch that is shared
with the host CPUs. The topology of the networks in the
computers also differs: LUMI-G is arranged in a more
conventional Dragonfly topology (Kim et al., 2008), while
JUWELS uses a Dragonfly + network topology as proposed
by Shpiner et al. (2017). All runs in Neko are executed with
one MPI rank per CPU core for the CPU nodes, and one MPI
rank per logical GPU for theGPU nodes. For our experiments
mixing GPUs and CPUs, we use Neko extended with support
to distribute the number of elements unevenly between
different MPI ranks. For the distribution of the elements we
then first partitioned the mesh with ParMETIS Karypis et al.
(2003) and after this, we performed a parameter search to find
the best weight (how many elements each core/GPU should
compute) between the GPU and CPU devices for each case.

For the execution of the inter-module cases, we uti-
lized the heterogeneous job scheduling available on
JUWELS and DEEP. As we are comparing a wide range
of computational platforms we introduce the notion of a
computing device for a computational platform. We
define the computing devices for each platform as one
CPU node on DEEP/JUWELS or one logical GPU,
meaning one Graphics Compute Die (GCD) of the
MI250X or one V100/A100 GPU. We provide an over-
view in Table 3. In our mixed runs, we use a mixture of
one CPU computing device and one GPU computing
device to illustrate the performance behavior when
mixing computer modules.

We utilize LLView on the DEEP system to collect sta-
tistics forMSA runs with and without significant amounts of
I/O. This is to identify how the workload and load balance
changes if the I/O load increases compared to the com-
putational workload.

Table 2. Software details and hardware details per node of the different computer modules and setups.

JUWELS Cluster Booster

Compute nodes 2271 936
CPU 2 × 24 core Intel Xeon 8168 2 × 24 core AMD EPYC 7402
CPU memory 96 GB DDR4-2666 RAM 512 GB DDR4-3200 RAM
GPU - 4x Nvidia A100
GPU memory - 40 GB HBM
Interconnect Mellanox InfiniBand EDR100 4 × Mellanox HDR200 InfiniBand
Compiler GCC 11.3.0 GCC 11.3.0
CUDA/ROCM - CUDA 11.7
MPI OpenMPI 4.1.4 OpenMPI 4.1.4

DEEP Cluster Booster

Compute nodes 50 75
CPU 2 × 12 core Intel Xeon 6146 2 × 8 core Intel Xeon 4215
CPU memory 192 GB DDR4 48 GB DDR4
GPU - Nvidia V100
GPU memory - 32 GB HBM
Interconnect Mellanox InfiniBand EDR100 Mellanox InfiniBand EDR100
Compiler Intel 2021.4.0 Intel 2021.4.0
CUDA/ROCM - CUDA 11.7
MPI ParaStationMPI 5.5.0 ParaStationMPI 5.5.0

LUMI LUMI-G

Compute nodes 2560
CPU 1 × 64 core AMD EPYC 7A53
CPU memory 512 GB DDR4
GPU 4 × AMD Instinct MI250X
GPU memory 128 GB HBM2e
Interconnect 4 × 200 GB/s Slingshot-11
Compiler CCE 14.0.2
CUDA/ROCM ROCM 5.0.2
MPI Cray-mpich 8.1.18

336 The International Journal of High Performance Computing Applications 39(3)

6. Results

In this section, we detail the performance measurements for
the different simulation cases across the experimental
platforms and discuss how the results relate to our previous
performance analysis. We show the standard deviation with
a shaded area in all plots.

6.1. Performance measurements

We have collected the majority of the runs and comparison
between DEEP and JUWELS into Figure 3 together with the
modeled best-case performance for the MSA runs. We see
that the GPUs significantly outperform the CPUs for Neko,
similar to (Karp et al., 2023), while the strong scaling
behavior when using GPUs is significantly worse. Scaling
on the CPU clusters is nearly linear with a parallel efficiency
between 90% and 110% in almost all cases. The superlinear
speedup we observe in for example the Pipe and TGV case
on JUWELS is a well-known property of the spectral element
method when strong scaling on multicore CPUs, this is
discussed in for example Offermans et al. (2016). For the
GPUs, we achieve a parallel efficiency of 80% for the first
points while it decreases towards 50%–60% when we have
4000 or fewer elements per GPU. We observed that in
general, it was beneficial to put as many elements as possible
on the GPU when in the extreme scaling domain, where the
computing devices are close to their max capacity, due to
their high performance. When in the scaling domain how-
ever, putting more elements on each CPU core gave the best
performance, with each GPU computing around 60 � 120
times the number of elements compared to a single CPU core.

Focusing first on the turbulent pipe case shown at the top
of Figure 3 we see how the performance is affected by
distributing the computation between different computer
architectures. As is proposed in the performance model, the
performance is between the GPU and CPU performance and
aligns well with the modeled line for the DEEP cluster.
However, it becomes evident that the performance of this
use case on JUWELS does not benefit from MSA, as the
problem is small enough to be efficiently run on a single GPU
node with four GPUs and 9000 elements per GPU. The
performance model for the best possible execution time

follows a perfect linear scaling from one GPU. Therefore, it
provides a very optimistic bound for JUWELS, significantly
overpredicting the performance, because it does not take into
account the impact of network communication when scaling
beyond one GPU node. We also performed measurements
using the local CPUs of the GPU nodes, but even in this case,
the communication overhead surpassed the potential perfor-
mance gain from using more CPUs on JUWELS. This can be
partially explained by the vast imbalance between the GPU
and CPU nodes on JUWELS, where the DDR memory of the
host CPUs offers less than 10% of the accumulated memory
bandwidth of HBM memory on the GPUs. Partitioning the
domain then leads to expensive memory transfers over PCIe.

The primary case for MSA here would be when only one
GPU is available, which cannot fit the entire problem. This is
the case on the DEEP system. Using 1 GPU and 1 CPU node
on DEEP results in more than 2× speedup compared to 2 CPU
nodes. Using both the GPU andCPU could thus potentially be
beneficial for personal computers and desktops where the
global memory of the GPU can not accommodate the entire
problem. Of note is that the imbalance is lower on DEEP, as
the number of GPUs per node is smaller. Using additional
CPUs, both on the same node or another module yields here a
proportionally larger performance improvement.

For the TGV case, we see a similar performance curve to
that of the turbulent pipe where the GPU and CPUs perform
similarly. As for the MSA runs, we see that the performance
for a few nodes is rather low as the CPUs need to carry a vast
amount of memory, we are in other words limited by the
Cmax of the GPUs, meaning that the CPUsmust carry out the
majority of the computational cost. For 16 computing devices,
however, we find ourselves in the domain of our model where
we can obtain additive performance in the best case as we scale
up. For DEEP we get within 10%–15% of the best possible
time for 8 and 16 computing devices, while we are within 10%
for eight computing devices on JUWELS. For 32 on DEEP
and 32–64 on JUWELS the communication time Tc quickly
impacts the performance we can achieve and the actual per-
formance deviatesmore than 20% from themodeled best-case,
but the curve starts to align with the GPU-only scaling. We
observe that for all cases up to 32 devices, the modeled
performance predicts a worse performance than using the same
number of GPU computing devices. For 64 devices the
modeled performance of the MSA run would perform equally
to the measured performance of 64 GPUs, assuming perfect
scaling. At this point, however, the internal latency (Tc) of the
computing units and communication overhead is significant,
leading to a worse performance than modeled.

For the largest case, RBC, our results differ in some
regards from the previous cases. As the Rayleigh-Bénard
case has more than 2M elements, we cannot fit the problem
on the DEEP Booster module where the GPUs only have
32 GB of HBM memory per GPU. We want to compare the
number of computing devices between Cluster and Booster

Table 3. List of computing devices used in the experiments. For
the MSA runs we utilize a 1:1 Mix where one computing device
from the Booster and Cluster module is used simultaneously.

Compute cluster Computing device

DEEP-booster 1 V100 GPU
DEEP-cluster 1 node with 2 × 12 Intel CPU cores
JUWELS-booster 1 A100 GPU
JUWELS-cluster 1 node with 2 × 24 Intel CPU cores
LUMI-G 1 MI250X GCD

Karp et al. 337

fairly, which prevented us from computing the problemwith
48 GPUs, because the memory requirement is around 1 GB
of memory per 1000 elements (meaning a total memory
requirement of 2000 GB for the RBC case) for polynomial
order 7. As such we perform measurements only on the
Cluster, comparing to the use of both the Booster and
Cluster modules. The modeled best case then is based only
on the best CPU performance and the computational cost
dedicated to the CPUs. Here we can clearly see the op-
portunity of running a modular job to enable large problems
to be efficiently executed. By using 48 GPUs in addition to
48 Cluster nodes, and using almost the whole DEEP system,
we obtain a speedup of 2.7× compared to using almost the

whole CPU module. However, one should note that the
performance actually decreases compared to the Cluster-
only runs when we execute the computation with 48 com-
puting devices on DEEP. This is because of the lower
memory capacity of the GPU nodes, which means that the
number of elements per core is larger than when using only
48 CPUs. For 48 devices the number of elements increases
from 1820 to 2400 as each V100 GPU can only accom-
modate a bit more than 30,000 elements in the HBM
memory. The cost C per core then grows, and the runtime
also increases, as predicted by our model. As such, one
needs to consider that replacing one module with a high
memory capacity by one with a higher performance and

Figure 3. Performance comparison between DEEP and JUWELS for our three different test cases. We show perfect linear scaling for the
Booster and Cluster runs with a dotted line while we show themodeled performancewith a green solid line without markers for the MSA
runs. The modeled time is based on the highest performance Popt for the given case measured on the Booster and Cluster modules. (a), (c),
and (e) show performance on the DEEP supercomputer. (b) (d) and (f) show performance on the JUWELS supercomputer.

338 The International Journal of High Performance Computing Applications 39(3)

lower memory capacity does still decrease the cost per rank.
Otherwise, the benefit of using a more powerful module
does not improve the performance. This is no longer the
case when using 48 GPUs: they then have a large enough
capacity to also decrease the work per core for the CPUs.

On JUWELS however, the performance increase is only
prevalent for 64 computing devices, while using 64 GPUs +
64 CPU nodes gives a lower performance than only using
64 GPUs. As such the primary benefit of inter-module jobs
for CFD applications is in the domain when Tc is compa-
rably small and the Booster module does not have enough
memory available to accommodate the problem. This
corresponds to the extreme scale operation domain, which
for Neko corresponds to more than 20,000 elements (for
polynomial order 7), using half or more of the available
HBM memory on the GPUs. It is only in this domain when
additional computational resources are not as heavily af-
fected by the different performance characteristics of the
different modules and the performance is close to additive.

We also provide a comparison between the LUMI and
JUWELS Booster modules for the RBC case in Figure 4. As
we see in our measurements, CFDwhich can utilize GPUs is
executed most efficiently on a large Booster-like system, we
also provide this comparison between two current pre-
exascale European supercomputers incorporating a modu-
lar design. As the best case in our measurements is to use the
GPUs only to as large an extent as possible, we also include
measurements with device-aware MPI enabled, where the
MPI calls can be issued using pointers to memory on the
device directly, further eliminating the host. One thing that
is clear from the comparison between LUMI and JUWELS
is that not using device-aware MPI on LUMI gives a sig-
nificant performance penalty of 30%–50%, likely because
the NIC is attached to the GPU using MPI on the host leads
to unnecessary data movement. For JUWELS, we observe a
negligible difference between using device-aware MPI and
host MPI, and it performs similarly to using host MPI on
LUMI. Overall, one A100 performs better than one GCD of
the MI250X when the number of nodes is small, but when
the number of nodes is increased the improved network on
LUMI makes up the difference. The difference between
device-aware MPI and host MPI on JUWELS is smaller
than 5% and well within the standard deviation of a time
step. This is in contrast with previous runs we executed
using a mesh that was not load-balanced when device-MPI
could perform as much as 6× better than using host MPI.
These measurements indicate that if the problem is well
partitioned, using device instead of host MPI does not make
a big difference on JUWELS, but for ill-partitioned prob-
lems, the importance of device-aware MPI grows. On
LUMI, not using device-aware MPI always gives a sig-
nificant performance penalty, performing 30%–50% worse
than with device-aware MPI enabled. Compared to the CPU
only runs on JUWELS, we observed that CPUs were much

less affected by the partitioning of the elements between the
different ranks. The large differences can be partially ex-
plained if we consider the node configuration on JUWELS
Booster and LUMI-G and how the NICs are installed. For
LUMI, they are attached directly via PCI Gen 4 to the GPUs
whereas the host is not directly connected to the network as
the node architecture is tailored for application where most
data resides in the HBM memory of the GPUs (Atchley
et al., 2023). This means that when device-aware MPI is not
used, the data cannot be sent directly from the host, but it is
first transferred from the GPU to the host CPU and then
passed back through the GPU again before being com-
municated through the network. The same process is also
applied when receiving messages. LUMI is thus not well
suited for host-MPI. On JUWELS however, one would not
expect the difference to be as pronounced since the PCIe
switch is shared between the host and the GPU, and the data
must not pass through the GPU an extra time when sending
and receiving a message. However, still the difference
compared to device-aware MPI is smaller than expected as
one still executes two extra memory transfers to and from the

Figure 4. Performance comparison between the LUMI-G and
JUWELS-Booster module where we compare utilizing the host
for communication (host MPI) and utilizing device-aware MPI
where the host is only used to schedule kernels on the device.

Karp et al. 339

CPU for each message and does not utilize the direct
communication between GPUs that device-aware MPI en-
ables. A probable explanation of the limited impact observed
for JUWELS is that the configuration of MPI we employ on
JUWELS is not highly optimized for device-aware MPI.
There is a significant number of options for the MPI runtime
on JUWELS, for example, by configuring UCXwe would be
able to achieve better use of device-aware MPI at this scale.
In particular, during the runs on JUWELS the unreliable
datagram (UD) setting with CUDA transport for UCX was
used, intended for medium-sized simulations. It is possible
that the low-memory DC (Dynamically Connected) option
might be more performant at this scale. This option, however,
had at the time of carrying out these experiments not been
exhaustively tested on the JUWELS system.

6.2. Modeled performance

In our performance model, we are interested in modeling
the best possible execution time given a set S of computing
devices. While we observed that it in some cases signif-
icantly overpredicts the performance for a mixed CPU-
GPU run, it clearly illustrates how using only the strongest
computing device to as large an extent as possible (as-
suming there are enough of them to accommodate the
problem) is the way forward for large-scale homogeneous
simulations. Although we have focused on CFD in our
work, the same reasoning can be applied to any homo-
geneous workload where the main issue is to load balance
parts of the problem between different ranks. As many
applications fall in this category, our results support the

trend of recent massively parallel systems to utilize pri-
marily GPUs for the computation and dedicate a less
powerful host only to schedule the computations. The
latest candidates in this regard, LUMI, and Frontier, il-
lustrate this trend clearly as the bandwidth and flop/s of the
accelerators are more than 20× the performance of the host
on a compute node. With upcoming architectures, we
anticipate that the trend to remove the host from the
computation and offload all tasks to the accelerator will
continue. This is also the idea behind the Booster module
where low-powered CPUs are equipped with powerful
accelerators (Kreuzer et al., 2018). With this, we stress the
point that for problems like CFD using a mix of CPU/GPU
resources will likely not lead to any gains in the future,
except for the case when the best-suited computing unit (in
our case GPUs) cannot accommodate the entire problem.
However, an opportunity is also to use applications such as
this to backfill the computer resources when the system is
idle. It is expected that incorporating more technologies
such as malleable job-scheduling where jobs grow and
shrink, applications that operate in the extreme-scale do-
main could use a simple performance model to indicate
whether adding resources can be beneficial to decrease
their time to solution. For Neko, in this case, our results
indicate that the application operates in the extreme scale
domain when more than half of the available memory is
used on the GPUs. In a scenario where only some CPU
resources are available directly to start the initialization of
the problem, as more GPU resources become available the
application accommodates more GPUs until the point at
which the problem fits on only the Booster.

Figure 5. Performance traces with low-performance overhead from LLView for the GPU nodes (top) and CPU nodes (bottom) for an
MSA run of the TGV case using 64 nodes split equally between GPU and CPU nodes (1:1 mix). The metric CPU and GPU usage are
defined as the percent of time over the past sample period during which one or more kernels were executing on the GPU. (a) A trace
with no I/O. (b) A simulation with extensive I/O is presented.

340 The International Journal of High Performance Computing Applications 39(3)

6.3. I/O and mixing modules

In the previous sections, we primarily considered the issue
of balancing the load between different modules to the
actual computation, however, for several applications I/O is
the primary performance bottleneck. The impact of exe-
cuting with a significant portion of I/O where output is
written at each time step, versus one without any I/O is
shown from LLView in Figure 5. From this, it is clear that
not only must one then balance the computational load
between the different computing devices, but also the writes
to and from disk. The issue of balancing the load between
devices can in the extreme case lead to a conflict between
the computational load balance and the load on the file
system. The I/O imbalance is due to the GPUs computing
100 times the number of elements compared to one CPU
core, as such, on DEEP, this leads to the GPU nodes per-
forming 100/24 ≈ 4 times more I/O, greatly impacting the
GPU usage. This I/O imbalance leads to the GPUs spending
a significant time idle compared to when not a lot of I/O is
executed. The overall GPU utilization in this example is
rather low though, as it is measured for the TGV case with
32 GPUs and 32 CPUs, and the problem size per computing
device is comparably low.

7. Conclusions

Our results support the notion that if the numerical method
can both utilize CPUs and GPUs efficiently, executing
large-scale CFD on a Booster-like system is beneficial
when the problem fits on only this module. There is some
room for improvement in the use of a mix of CPU and GPU
nodes when the problem size is too large for the GPU
module and when the HBMmemory of the GPUs cannot fit
the entire computational load, for our Neko setting this
requirements was 1 GB of global memory per 1000 ele-
ments, but this may vary between cases and for other
applications. Overall, we observed that for this type of
code where we utilize domain partitioning between the
modules, the communication overhead quickly becomes
larger than the potential gain from using multiple com-
puting devices. This is further amplified when a significant
amount of I/O is carried out. As the GPUs have a higher
performance and carry out a larger amount of work, they
also write significantly more data to the parallel file sys-
tem. While the performance of the GPUs is significantly
higher, the bandwidth to disk is comparable to the CPU
nodes, leading to a significant imbalance. When the
problem can fit on the GPUs only, it is best to utilize only
the Booster, and even using the local host CPU gives a
negligible or negative impact on the performance. For the
GPU-only runs, we observe a difference between the
JUWELS Booster and LUMI supercomputer when using
device-aware MPI, primarily attributed to their respective

network, and in particular to the NICs on LUMI being
connected directly to the GPUs. The performance of one
Nvidia A100 on JUWELS is higher than LUMI’s AMD
MI250X GCD for a few nodes, but using device MPI
improves the scaling on LUMI. We observe that the trend
of moving to larger GPU-accelerated systems, where not
only computation but also communication is offloaded to
the most powerful computing units to increase locality,
will benefit computational fluid dynamics applications
able to efficiently offload the whole algorithm to the
accelerator.

Acknowledgements

The authors gratefully acknowledge the computing time provided
by the Jülich Supercomputing Centre (on JUWELS and DEEP).
We acknowledge the National Academic Infrastructure for Su-
percomputing in Sweden (NAISS) and the Swedish National In-
frastructure for Computing (SNIC) for awarding this project access
to the LUMI supercomputer, owned by the EuroHPC-JU, hosted
by CSC (Finland) and the LUMI consortium through a LUMI
Sweden XLarge call.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by the European Union Horizon 2020
research and innovation programme under grant agreement No
955606 (DEEP-SEA). The EuroHPC Joint Undertaking (JU) re-
ceives support from the European Union Horizon 2020 research
and innovation programme and Germany, France, Spain, Greece,
Belgium, Sweden, Switzerland. Financial support was provided by
the Swedish e-Science Research Centre Exascale Simulation
Software Initiative (SESSI) and the Swedish Research Council
project grant ”Efficient Algorithms for Exascale Computational
Fluid Dynamics” Vetenskapsrådet, (grant reference 2019-04723).

ORCID iDs

Martin Karp  https://orcid.org/0000-0003-3374-8093
Philipp Schlatter  https://orcid.org/0000-0001-9627-5903
Niclas Jansson  https://orcid.org/0000-0002-5020-1631

Supplemental material

The Neko framework and the details for the test cases can be
found on github. The Neko package can be downloaded here
https://github.com/ExtremeFLOW/neko and the test cases on this
link https://github.com/ExtremeFLOW/MSA-tests.

Karp et al. 341

https://orcid.org/0000-0003-3374-8093
https://orcid.org/0000-0003-3374-8093
https://orcid.org/0000-0001-9627-5903
https://orcid.org/0000-0001-9627-5903
https://orcid.org/0000-0002-5020-1631
https://orcid.org/0000-0002-5020-1631
https://github.com/ExtremeFLOW/neko
https://github.com/ExtremeFLOW/MSA-tests

References

Abdelfattah A, Barra V, Beams N, et al. (2021) GPU algorithms for
efficient exascale discretizations. Parallel Computing 108:
102841.

AlOnazi A, Keyes D, Lastovetsky A, et al. (2015) Design and
optimization of openfoam-based CFD applications for hybrid
and heterogeneous HPC platforms. Arxiv. doi: 10.48550/
arXiv.1505.07630.

Arima E, Comprés AI and Schulz M (2022) On the convergence of
malleability and the HPC powerstack: exploiting dynamism
in over-provisioned and power-constrained HPC systems
International Conference on High Performance Computing.
NY: Springer, 206–217.

Atchley S, Zimmer C, Lange J, et al. (2023) Frontier: exploring
exascale Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis,
1–16.

Borrell R, Dosimont D, Garcia-Gasulla M, et al. (2020) Hetero-
geneous CPU/GPU co-execution of CFD simulations on the
POWER9 architecture: application to airplane aerodynamics.
Future Generation Computer Systems 107: 31–48.

Calore E, Gabbana A, Schifano SF, et al. (2019) Optimization of
lattice Boltzmann simulations on heterogeneous computers.
The International Journal of High Performance Computing
Applications 33(1): 124–139.

Deville MO, Fischer PF, Fischer PF, et al. (2002) High-order
methods for incompressible fluid flow. Cambridge University
Press, Vol. 9.

ElKhoury GK, Schlatter P, Noorani A, et al. (2013) Direct numerical
simulation of turbulent pipe flow at moderately high Reynolds
numbers. Flow, Turbulence and Combustion 91(3): 475–495.

Fischer PF (2015) Scaling limits for PDE-based simulation 22nd
AIAA Computational Fluid Dynamics Conference, 3049.

Fischer PF, Lottes JW and Kerkemeier SG (2008) nek5000 Web
page. Available at: https://nek5000.mcs.anl.gov.

Fischer P, Min M, Rathnayake T, et al. (2020) Scalability of high-
performance PDE solvers. The International Journal of High
Performance Computing Applications 34(5): 562–586.

Ivanov I, Gong J, Akhmetova D, et al. (2015) Evaluation of
parallel communication models in nekbone, a nek5000 mini-
application. In: 2015 IEEE International Conference on
Cluster Computing. IEEE, pp. 760–767.

Iyer KP, Scheel JD, Schumacher J, et al. (2020) Classical 1/
3 scaling of convection holds up to Ra = 1015. Proceedings of
the National Academy of Sciences 117(14): 7594–7598.

Jansson N, Karp M, Perez A, et al. (2023) Exploring the ultimate
regime of turbulent Rayleigh–Bénard convection through
unprecedented spectral-element simulations Proceedings of
the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, 1–9.

Jansson N, Karp M, Podobas A, et al. (2024) Neko: a modern,
portable, and scalable framework for high-fidelity compu-
tational fluid dynamics. Computers & Fluids 275: 106243.

Ju Y, Li M, Perez A, et al. (2023) In-situ techniques on GPU-
accelerated data-intensive applications 2023 IEEE 19th In-
ternational Conference on E-Science (E-Science). IEEE,
1–10.

Karniadakis GE, Israeli M and Orszag SA (1991) High-order
splitting methods for the incompressible Navier-Stokes
equations. Journal of Computational Physics 97(2):
414–443.

Karp M, Jansson N, Podobas A, et al. (2022) Reducing com-
munication in the conjugate gradient method: a case study on
high-order finite elements Proceedings of the Platform for
Advanced Scientific Computing Conference, 1–11.

Karp M, Massaro D, Jansson N, et al. (2023) Large-scale direct
numerical simulations of turbulence using GPUs and modern
Fortran. The International Journal of High Performance
Computing Applications 37(5): 487–502.

Karypis G, Schloegel K and Kumar V (2003) Parmetis In: Parallel
Graph Partitioning and Sparse Matrix Ordering Library.
Version 2.

Kim J, Dally WJ, Scott S, et al. (2008) Technology-driven, highly-
scalable dragonfly topology. ACM SIGARCH - Computer
Architecture News 36(3): 77–88.

Kolev T, Fischer P, Min M, et al. (2021) Efficient exascale dis-
cretizations: high-order finite element methods. The Interna-
tional Journal of High Performance Computing Applications
35(6): 527–552.

Kooij GL, Botchev MA, Frederix EM, et al. (2018) Comparison of
computational codes for direct numerical simulations of
turbulent Rayleigh–Bénard convection. Computers & Fluids
166: 1–8.

Krause D (2019) JUWELS: modular tier-0/1 supercomputer at the
Jülich supercomputing centre. Journal of Large-Scale
Research Facilities JLSRF 5: A135.

Krause D and Thörnig P (2018) JURECA: modular supercomputer
at Jülich supercomputing centre. Journal of Large-Scale
Research Facilities JLSRF 4: A132.

Kreuzer A, Eicker N, Amaya J, et al. (2018) Application Per-
formance on a Cluster-Booster System. IEEE, 69–78. URL.
DOI: 10.1109/IPDPSW.2018.00019.

Kreuzer A, Lippert T, Suarez E, et al. (2021) Porting Applica-
tions to a Modular Supercomputer-Experiences from the
Deepest Project. Technical report, Jülich Supercomputing
Center.

Liu X, Zhong Z and Xu K (2016) A hybrid solution method for
CFD applications on GPU-accelerated hybrid HPC platforms.
Future Generation Computer Systems 56: 759–765.

Markov S, Petkov P and Pavlov V (2019) Large-scale molecular
dynamics simulations on modular supercomputer architecture
with gromacs. In: International Conference on Variability of
the Sun and Sun-like Stars: From Asteroseismology to Space
Weather. Springer, 359–367.

Merzari E, Hamilton S, Evans T, et al. (2023) Exascale multi-
physics nuclear reactor simulations for advanced designs. In:
Proceedings of the International Conference for High

342 The International Journal of High Performance Computing Applications 39(3)

https://doi.org/10.48550/arXiv.1505.07630
https://doi.org/10.48550/arXiv.1505.07630
https://nek5000.mcs.anl.gov
https://doi.org/10.1109/IPDPSW.2018.00019

Performance Computing, Networking, Storage and Analysis,
1–11.

Niemeyer KE and Sung CJ (2014) Recent progress and
challenges in exploiting graphics processors in compu-
tational fluid dynamics. The Journal of Supercomputing
67: 528–564.

Offermans N, Marin O, Schanen M, et al. (2016) On the strong
scaling of the spectral element solver nek5000 on petascale
systems. In: Proceedings of the Exascale Applications and
Software Conference 2016, 1–10.

Riedel M, Sedona R, Barakat C, et al. (2021) Practice and
experience in using parallel and scalable machine learning
with heterogenous modular supercomputing architectures.
In: 2021 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE,
76–85.

Shpiner A, Haramaty Z, Eliad S, et al. (2017) Dragonfly+: low cost
topology for scaling datacenters. In: 2017 IEEE 3rd Inter-
national Workshop on High-Performance Interconnection
Networks in the Exascale and Big-Data Era (HiPINEB).
IEEE, 1–8.

Slotnick JP, Khodadoust A, Alonso J, et al. (2014) CFD vision
2030 study: a path to revolutionary computational aero-
sciences. Technical report.

Suarez E, Eicker N and Lippert T (2019) Modular supercomputing
architecture: from idea to production. In: Contemporary High
Performance Computing. CRC Press, 223–255.

Tufo HM and Fischer PF (1999) Terascale spectral element al-
gorithms and implementations. In: Proceedings of the
1999 ACM/IEEE Conference on Supercomputing, 68–81.

van Rees WM, Leonard A, Pullin D, et al. (2011) A comparison of
vortex and pseudo-spectral methods for the simulation of
periodic vortical flows at high Reynolds numbers. Journal
of Computational Physics 230(8): 2794–2805.

Witherden FD, Farrington AM and Vincent PE (2014) Pyfr: an
open source framework for solving advection–diffusion type
problems on streaming architectures using the flux recon-
struction approach. Computer Physics Communications
185(11): 3028–3040.

Zhong Z, Rychkov V and Lastovetsky A (2014) Data partitioning
on multicore and multi-GPU platforms using functional
performance models. IEEE Transactions on Computers
64(9): 2506–2518.

Author biographies

Martin Karp is a Postdoctoral Researcher at the de-
partment of Engineering Mechanics at KTH Royal In-
stitute of Technology. His research interests are primarily
related to computational science and the interplay be-
tween algorithms and computer hardware. The applica-
tion area of his research are large-scale simulations of
turbulence. He is one of the primary developers of Neko,
a scalable and portable solver for high-fidelity fluid

dynamics. He holds a PhD in Computer Science from
KTH Royal Institute of Technology.

Estela Suarez is Joint Lead of the Department Novel
System Architecture Design at the Jülich Super-
computing Centre, which she joined in 2010. Since
2022 she is also Associate Professor of High Performance
Computing at the University of Bonn, and member of the
RIAG (Research and Innovation Advisory Board from
EuroHPC JU). Her research focuses on HPC system
architecture and codesign. As leader of the DEEP project
series she has driven the development of the Modular
Supercomputing Architecture, including hardware,
software and application implementation and validation.
She also leads the codesign efforts within the European
Processor Initiative. She holds a PhD in Physics from the
University of Geneva (Switzerland) and a Master degree
in Astrophysics from the University Complutense of
Madrid (Spain).

Jan H. Meinke received his Ph.D. in physics from Michigan
State University in 2002. In his thesis work he studied the
ground state behavior of disordered systems using graph
algorithms. In 2005, he started to explore biological
problems usingMonte Carlo and other methods as a postdoc
in the NIC research group Computational Biology and
Biophysics. Since 2008, he has been a staff scientist of the
Simulation and Data Laboratory Biology at the Jülich
Supercomputing Centre. His research interests include
protein folding and how to make efficient use of HPC
hardware for solving scientific problems.

Måns Andersson is a Doctoral Student in Computer Science
with specialization in High-Performance Computing at
KTH Royal Institute of Technology with a background in
numerical analysis.

Philipp Schlatter (from Zürich, Switzerland) obtained a
degree in Mechanical Engineering from the Swiss Federal
Institute of Technology (ETH Zürich) in 2001, and a PhD in
Fluid Mechanics at the Institute of Fluid Dynamics (IFD)
from ETH in 2005. He then moved to the Royal Institute of
Technology (KTH) in Stockholm, first as a Postdoc, from
2007 to 2010 as an assistant professor, from 2010 to 2018 as
associate professor, and from 2019 as full professor at KTH,
with special interest in large-scale simulations of turbulent
flows, mainly in wall-bounded configurations. In 2014 he
was chosen as a Wallenberg Academy Fellow (which was
extended in 2018), a prestigious programme with 5 +
5 years funding. He was also the director of the Linné
FLOW Centre at KTH Stockholm, leading the fluid-
dynamics community in the Swedish e-Science Research
Centre, and the Swedish National Allocation Committee. In
2023 he moved to the Institute of Fluid Mechanics (LSTM)
at the Friedrich-Alexander-Universität (FAU) Erlangen-
Nürnberg. He is also adjunct professor at the University of

Karp et al. 343

Bologna. The current research involves both large-scale
simulations based on highly accurate spectral and
spectral-element methods, but also close interaction to
experimentalists in an effort to cross-validate simulation
and experimental data.

Stefano Markidis is a Professor in Computer Science with
specialization in high-performance computing systems, in-
cluding supercomputers and quantum computers. Markidis
holds a Ph.D. from the University of Illinois at Urbana-
Champaign and an MS from Politecnico di Torino. Before
joining KTH, Markidis was a researcher at the Los Alamos
National Laboratory, Lawrence Berkeley National Laboratory,

and KULeuven. Markidis was awarded two R&D Awards in
2005 and 2017.

Niclas Jansson is a Researcher at PDC Center for High-
Performance Computing, KTH Royal Institute of Tech-
nology. He received his MSc in computer science and PhD
in numerical analysis from KTH Royal Institute of Tech-
nology. His research interests include scalable numerical
methods and adaptive finite and spectral element methods.
He has extensive experience in extreme-scale computing as
a developer of RIKEN’s multiphysics framework CUBE,
the HPC branch of FEniCS, and the next-generation spectral
element framework Neko.

344 The International Journal of High Performance Computing Applications 39(3)

	Experience and analysis of scalable high
	1. Introduction
	2. Related work
	2.1. CFD on heterogenous architectures
	2.2. Applications on MSA

	3. Computational fluid dynamics in HPC
	3.1. Neko
	3.2. Flow cases under consideration
	3.2.1. Turbulent pipe
	3.2.2. Taylor-green vortex
	3.2.3. Rayleigh

	4. Performance analysis
	4.1. Performance model for mixing different computing devices
	4.2. Operation domains

	5. Experimental setup
	6. Results
	6.1. Performance measurements
	6.2. Modeled performance
	6.3. I/O and mixing modules

	7. Conclusions
	Acknowledgements
	Declaration of conflicting interests
	Funding
	ORCID iDs
	Supplemental material
	References
	Author biographies

