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A B S T R A C T   

Agriculture faces several challenges including climate change and biodiversity loss while, at the same time, the 
demand for food, feed, biofuels, and fiber is increasing. Sustainable intensification aims to increase productivity 
and input-use efficiency while enhancing the resilience of agricultural systems to adverse environmental con-
ditions through improved management and technology. Recent advances in sensing, machine learning, 
modeling, and robotics offer opportunities for novel smart digital technologies to enable sustainable intensifi-
cation. However, developing smart digital technologies and putting them into agricultural practice, requires 
closing major research gaps, related in particular to (1) the utilization of multi-scale multi-sensor monitoring in 
space and time, (2) using artificial intelligence for linking process and data-driven methods, (3) improving de-
cision making and intervention in plant production, and finally (4) modeling conditions and consequences of 
farmers acceptance. Closing these gaps requires an interdisciplinary approach. Here, we present a research 
agenda and steps forward to steer research efforts, highlighting research priorities, and identifying required 
interdisciplinary research collaboration. Following this agenda will leverage the full potential of smart digital 
technologies for sustainable crop production.   

1. Introduction 

One of the greatest challenges for humanity is to produce sufficient 
food, feed, fiber, and biofuel, while simultaneously adapting to climate 
change, reducing agriculture’s environmental footprint, and dealing 

with pressure on labor supply (FAO, 2017). These challenges require a 
new way of thinking about crop production and field management. 
Smart digital technologies can enable innovative approaches, such as 
autonomous light-weight robots and drones, high-resolution monitoring 
of the crop and field status, linkage of data to simulation models, and 
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artificial intelligence (AI) (Asseng and Asche, 2019; Basso and Antle, 
2020; Grieve et al., 2019; Khanna et al., 2022; Kumar and Sharma, 2020; 
Ramin Shamshiri et al., 2018). The rapid decline in the cost of sensors, 
robots, and computing power, as well as rapid advances in AI, offer 
opportunities for sustainable intensification (Grieve et al., 2019). 
Existing precision agriculture tools are becoming increasingly con-
nected, accurate, efficient, and widely applicable (Finger et al., 2019). 
Combining these tools with process-based agro-ecosystem models en-
ables new ways of crop management by predicting plant ideotypes for 
specific environments (Lynch et al., 2022), by predicting the perfor-
mance of crops in a specific environment, the development of diseases, 
pests, and weeds or the demand for nutrients (Caubel et al., 2017; Col-
bach et al., 2014; Seidel et al., 2021). These models also enable the 
assessment of the impacts of novel technologies from local to landscape 
or regional scales (Duru et al., 2015; Kersebaum et al., 2015), which may 
contribute to the design of more effective policies and regulations and 
enable new field arrangements. 

While the potential of those tools is substantial, their realization 
remains an open challenge. To address this challenge, multidisciplinary 
collaborations (Ramin Shamshiri et al., 2018) and the right institutional 
settings connecting research, governmental support, regulation, and 
education programs are required (Grieve et al., 2019). In this article, we 
discuss four major research gaps (RG1–4) that need to be closed to 
realize these opportunities. These include (RG1) multi-scale multi--
sensor monitoring in space and time, (RG2) combining process and 
data-driven methods, (RG3) improving decision-making and interven-
tion, and (RG4) modeling conditions and impacts of upscaling. Along 
three examples (E1–3) we demonstrate how closing the research gaps 
contributes to addressing concrete practical agricultural sustainability 
challenges: (E1) real-time optimization of nitrogen (N) fertilization, (E2) 
automated selective weeding and detection of plant diseases, and (E3) 
implementing novel field arrangements such as patch cropping and 
mixed cropping. 

Existing literature highlighted the potential of smart digital tech-
nologies for sustainable intensification (Asseng and Asche, 2019; Basso 
and Antle, 2020; Grieve et al., 2019). However, they did not discuss 
which type of research and particularly research collaboration is 
required to realize the potential. We fill this gap by outlining a broad 
research agenda combining the views of an interdisciplinary group of 
experts. We also present the current state of research, drawing on ex-
amples from our ongoing large-scale interdisciplinary research project 
“PhenoRob - Robotics and Phenotyping Towards Sustainable Crop Pro-
duction”. Finally, we discuss steps forward to tackle the major chal-
lenges by outlining the required institutional settings. 

2. Research gaps 

We discuss four major research gaps that need to be closed on the 
way towards integrated smart digital solutions for sustainable crop 
production. For each gap, we first discuss its importance, major chal-
lenges, and what disciplines must collaborate to address them. 

2.1. RG1: Multi-scale multi-sensor monitoring in space and time 

Crop status information is fundamental for crop breeding, where 
functional and structural crop traits need to be characterized to guide 
the selection of promising genotypes, crop management, where real- 
time information on the plant status and field situations guides man-
agement actions, and crop modeling, where relationships between 
resource availability, physiological processes, yield, and ecosystem (dis) 
services are investigated. 

Monitoring of fields is often done with destructive or labor-intensive 
methods (Atkinson et al., 2019; Cai et al., 2016; Jones, 2004; 
Muñoz-Huerta et al., 2013). Increasingly, non-invasive optical methods, 
such as multi- and hyperspectral imaging or laser scanning, have been 
developed to provide higher throughput (Fiorani et al., 2012; Jin et al., 

2021; Watt et al., 2020). The precision of optical methods has greatly 
improved and nowadays Unmanned Aerial Vehicles (UAVs) measure at 
mm-ground resolution, opening the possibility for detailed single-plant 
monitoring and the detection of subtle, small-scale features, including 
the identification of diseases (Mahlein et al., 2019). Currently, there is 
no reliable high-throughput method for non-invasive root measure-
ments or quantifying root distributions in the field, however, novel root 
phenotyping approaches are being developed (Atkinson et al., 2019; 
Tracy et al., 2020). 

The increasing availability of field data with higher temporal and 
spatial resolution does not automatically satisfy the need for better crop 
status information. In contrast, it raises multiple challenges, which need 
to be tackled to make use of all the information. (i) The development of 
novel or the adaption of existing below- and above-ground sensing 
technologies is needed with a focus on in-field capability, automation, 
and non-invasiveness. This enables for example large-scale studies on 
above and below-ground phenology as one of the future directions 
identified in Piao et al. (2019). (ii) Methods for spatial and temporal 
registration of heterogeneous data are needed, enabling the combina-
tion of coordinate-based and plot-based measurements, and making 
information relatable to soil, genotypes, weather, and management 
data. This includes finding adequate data representations and formats 
and their storage in a common database, which is searchable and 
minable. Based on this it is possible to derive “urgently needed (Piao 
et al., 2019)” methods for multiple-scale and spatio-temporal data 
fusion. (iii) Methods to fuse models and data are needed as part of the 
monitoring process. This may be data assimilation into process-based 
models, but also the extraction of model parameters from data (e.g., 
light extinction coefficients) or the extraction of complex functional 
traits from model/data combinations (e.g. carbon assimilation rate, light 
use efficiency, water use efficiency). 

A close collaboration between plant and agricultural science, com-
puter science, and robotics, as well as geodesy, is necessary to address 
aspects such as databases, measurement automation, sensor technology, 
spatial registration, phenotyping, and crop modeling, and to utilize 
sensor data with an agronomic meaning. 

2.2. RG2: Combining data-driven and process-based modeling 

Realizing the opportunities offered by smart technology hinges on 
our ability to model and predict the development of crops and agro-
–ecosystems under different management and environmental conditions 
and thus to allow seasonal predictions. Process-based and data-driven 
models are two conceptually different approaches for this, but they 
are currently largely distinct. Process-based models start from the 
available theoretical knowledge and parameter calibration using avail-
able data to accurately predict real-world outcomes. These models 
typically require extensive information on initial states, parameters, and 
boundary conditions, which are often not completely available, limiting 
their application under real field conditions. Data-driven machine 
learning models excel at prediction tasks, particularly with large high- 
quality data. However, they are limited with insufficient data, for pre-
dicting rare or unseen phenomena, and are usually trained for a specific 
environment–transfer to other environments is challenging. Machine 
learning will benefit from prior structural or procedural knowledge 
(Karpatne et al., 2017; Sabour et al., 2017; von Rueden et al., 2020), 
however, incorporating domain knowledge and existing crop models in 
a principled fashion is challenging. Combining process-based and 
machine-learning approaches could help to overcome their specific 
weaknesses and help to move from correlation-based learning to the 
creation of explainable and causal models. 

To advance the usability of both approaches, we need to improve our 
capabilities to identify relevant features and dependencies of variables 
obtained from sensor data and develop hybrid learning systems that 
integrate expert knowledge with data-driven approaches. Since data are 
of heterogeneous origin and nature, ranging from existing models to 
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various sensor measurements, machine learning methods also need to be 
capable of working with both in an integrated fashion. Scaling these 
methods to large-scale applications is an additional open research issue. 
Further, active learning approaches might allow us to identify sparsely 
populated areas in the input-output space and request additional labeled 
data to strengthen the model. Addressing this research gap needs 
interaction between plant and crop modelers, agricultural domain ex-
perts, and machine learning scientists. 

2.3. RG3: Improving decision-making and intervention 

To maximize resource use efficiency and optimize management de-
cisions, we need to be able to localize, recognize, and treat individual 
field patches, plots, and ideally single plants in a targeted manner. 
Management decisions may also be increasingly executed via autono-
mous interventions. 

Improving decision-making includes field arrangement, species, and 
cultivar choice, sowing date, fertilization, irrigation management, as 
well as weed and disease management. Ideally, these decisions are based 
on predictions of the outcome, such as the potential yield or ecological 
(dis)services, with and without the intervention across alternatives, and 
quantification of the uncertainty in outcomes and the associated costs. 
For example, deciding if a weed individual should be removed requires 
specifying which weed species and quantity are economically acceptable 
and ecologically desired. Also, individual preferences of farm managers 
will have to be taken into account for autonomous solutions to support 
widespread adoption. Addressing these challenges requires sensing 
technology (RG1) and improved simulation modeling tools (RG2) to 
carry out counterfactual simulations. Frequently cited tools for the latter 
are process-based agroecosystem simulation models (Chenu et al., 2017; 
Enders et al., 2023). 

However, model-based real-time management decisions require an 
integrated multi-scale approach to modeling crop growth with real-time 
measurements of soil-crop-atmosphere variables and fluxes (Kersebaum 
et al., 2015) and data assimilation approaches within an integrated, 
operational framework. This gap needs to be bridged by fusing real-time 
management information with important prognostic information on the 
dynamics of crop systems. Apart from the challenge of making an eco-
nomic management decision based on available information, simula-
tions, and predictions, the actual execution of the intended action 
requires special collaborations. Here, robotic perception, planning, and 
control methods need to be combined with the necessary robustness 
from classical agricultural machinery and geospatial data management 
with accurate geolocation from geoinformation and geodesy. 

2.4. RG4: Modeling conditions and consequences of uptake 

Despite substantial research and development, current adoption 
rates of technology remain low (Lowenberg-DeBoer and Erickson, 
2019). Also, adoption may lead to unintended consequences (Basso and 
Antle, 2020). Both aspects crucially determine the overall environ-
mental impact of technology. Hence, governing the speed and direction 
of technology uptake is as important as technology development. 

This implies major challenges. For example, farm-scale interactions 
are expected to strongly affect uptake but empirical quantification is still 
limited (Shang et al., 2021). To steer adoption processes, we also need to 
identify drivers of adoption decisions and how policymakers, technology 
developers, or extension services can modulate these drivers. Further, 
improved modeling capabilities to assess the socio-economic and envi-
ronmental impacts at different scales are needed. Sectoral and general 
economy models exist with links to biophysical models or assessment 
indicators (Ewert et al., 2011; von Lampe et al., 2014). However, they 
consider technology adoption as exogenous, use representative, only 
statically interacting agents, and have limited resolution in representing 
technology and management decisions. Some of these limitations are 
addressed by Agent-Based Models (ABM) (Shang et al., 2021), which can 

reflect relevant social and market-level spatio-temporal dynamic in-
teractions. However, existing ABMs are limited to small regions because 
of computational constraints. We also face limitations in terms of the 
available data to assess what technology is currently used on farms 
(Lowenberg-DeBoer and Erickson, 2019). This means that even 
describing the reference point against which we compare novel tech-
nologies is hardly possible, particularly in a spatially explicit manner. To 
ease the transfer of knowledge from research to industry, we need to 
develop efficient routes for adopting novel technologies into agricultural 
practice. 

Closing the research gap requires collaboration with modelers and 
empirical scientists within agricultural economics, complemented by 
environmental, crop, ecology, and landscape scientists, particularly to 
quantify the expected environmental impacts of novel technologies. To 
assess technology options and describe their characteristics, collabora-
tion with engineers and technology experts is required. 

3. Benefits of closing the gaps: examples from our research 

Drawing on our research activities in PhenoRob we present three 
examples (E1–3) that demonstrate how closing the research gaps con-
tributes to addressing concrete practical agricultural sustainability 
challenges. It should be pointed out that the examples here are not an 
exhaustive list but aim as an illustration. There are other equally 
important areas, for example, irrigation management or optimized 
breeding, where closing the identified research gaps could have a sub-
stantial impact. 

3.1. E1: Real-time optimization of nitrogen fertilization 

Typically, farmers estimate the nitrogen (N) fertilizer demand based 
on pre-sowing soil N status measurements or based on sensors mounted 
on tractors as well as on expected yields. Lacking reliable tools for 
estimating the actual soil N status of the rooted soil and the crop N 
demand during the growing season can easily lead to suboptimal 
management. 

In our ongoing interdisciplinary research project PhenoRob, we 
developed a data assimilation framework called Digital Agricultural 
Avatar using agro-ecosystem models (Fig. 1k, l), ground- and drone- 
based remote sensing data (Fig. 1d, g), and ground reference observa-
tions from plants, roots, and soils including the critical N-turnover 
component nitrate (Fig. 1e, f, h, i). The Avatar is a digital twin of the 
respective field, which provides continuous online information on the N 
status of the soil and crop. A conceivable product could be a crop- and 
site-specific model-based tool (e.g., decision support system) for farmers 
providing information on an optimal N fertilization strategy on patches 
across fields and larger scales. It would also enable the quantification of 
certain ecosystem (dis)services (e.g., N and C gaseous emissions and 
nitrate leaching) as well as uncertainties. 

The proposed framework requires real-time measurements of rele-
vant soil-crop-atmosphere variables and fluxes that need to be pre- 
processed and provided to the model (RG1, RG2). We monitor soil 
water content and soil water potential continuously and provide the 
data wirelessly in real-time (Fig. 1a, b, i). Besides, we use a spectral 
electric impedance tomography sensing device to observe root system 
extension. A mobile system monitors reactive N species based on 
gaseous intermediate products which can be related to the current soil N 
status (Fig. 1j). Imagery collected by drones is used to estimate crop leaf 
area index and/or biomass (Fig. 1g, h). For a given field, high-resolution 
crop and soil data can be collected and used by the model as input or for 
data assimilation (Tewes et al., 2020). We downscale a fully coupled 
subsurface-land surface and atmospheric model from the continental 
scale to the field scale and then model the field with dedicated 
agro-ecosystem models that can resolve the within-field variability. 
Currently, the data is used to run an agro-ecosystem model not in 
real-time but in retrospect. Soil N status as well as leaf area index 
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products derived from remotely sensed imagery exist but a real-time 
automated retrieval of these products is pending. The real-time data 
assimilation into the model is under current research. 

The model can be used to optimize crop N fertilization while 
considering ecosystem disservices, uncertainty and costs (RG3). How-
ever, even with such a tool available, it remains uncertain if this alone is 
sufficient to limit excessive N use and N leaching or if other measures (e. 
g. policies or regulations) are required in addition. Assessing this re-
quires economic modeling of technology adoption and crop choice 
modeling at the landscape/regional scale (RG4) (Fig. 1m). 

3.2. E2: Selective weeding and plant disease detection 

Smart digital technologies have a great potential to reduce the 
required amount of applied chemicals for weed or plant disease control 
through targeted treatment on a plant or patch level. 

Agricultural weeding robots equipped with different actuators can 
execute the treatments only where it is needed and can also select the 
most effective treatment for the targeted plant or weed (Fig. 1j). It is also 
possible to decide if a weed needs to be treated at all, as there are weeds 
that do not harm the crop or are even beneficial in supporting pollinator 
diversity and ecosystem services. Selective weeding requires a robust 
real-time plant classification system that reliably identifies the crop and 

Fig. 1. a) PhenoRob Central Experiment, Bonn, Germany b) Patch Crop Experiment (photo by H. Schneider, ZALF PR) c) topsoil clay content (proximally sensed soil 
electrical resistivity, Geophilus), kindly provided by Anna Engels d) Combination of UAV Lidar, UAV multispectral imagery, and in-field mobile laser scanning e) 
Root distribution f) Ground robot with high-resolution optical sensors (photo by V.Lannert) g) UAV system (photo by V. Lannert) h) Classical fieldwork in a crop 
mixture experiment i) Scheme of the rhizotron facility at Selhausen, kindly provided by Lena Lärm j) Robot for targeted weed management (Ahmadi et al., 2022) k) 
Schematic crop model output showing the relationship between irrigation water input and yield l) Functional–structural plant models (Zhou et al., 2020) m) 
Agent-based model to upscale technology adoption. 
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both the stem location of dicotyl weeds and also the extent of grass 
weeds given by its leaf area (RG1). Operational systems for the online 
detection and classification of weeds from ground robots and UAVs have 
already been presented (Halstead et al., 2021; Lottes et al., 2020; Weyler 
et al., 2021). Based on these, multiple movable tools have been devel-
oped for our weed management and sensing robot (Ahmadi et al., 2022). 
Current investigations focus on deciding which weed to keep due to its 
contribution to biodiversity and/or low impact on yield and which to 
remove (RG3). This needs advanced thresholds and ecosystem models 
considering the current state of the crop and the environment as well as 
judging potential benefits of keeping the weed. Current studies also 
analyze whether farmers are interested in adopting selective weeding 
technologies, with the option to leave environmentally beneficial weeds, 
which depends on the motives and objectives of farmers (RG4). 

In the case of plant diseases, one main challenge is to accurately 
detect their occurrence and distribution for, potentially site-specific, 
pesticide applications. Currently, monitoring is done mainly by costly 
and error-prone visual inspection by humans (Bock et al., 2021; Mahlein 
et al., 2018). Improving this requires the establishment of applicable 
sensor systems (RG1) and their integration into modeling approaches for 
data analysis (RG2) and decision-making (RG3). Site-specific pesticide 
applications require research on the epidemiology of plant pathogens, 
and exhaustive datasets of UAV field monitoring from different years 
and different sites. These have been established within PhenoRob 
(Barreto Alcántara et al., 2022). Based on these unique datasets and 
deep learning approaches, an accurate estimate of disease severity and 
intensity in time and space is possible and will be further improved. One 
result of the current studies may be that well-established threshold 
systems for decision-making in plant protection need to be reconsidered 
and adapted. We expect that smart digital technologies provide a 
tremendous potential to reduce the amount of pesticides applied, and 
will be one technology to comply with ambitious pesticide reduction 
plans. However, a substantial research gap still exists in the character-
ization of multiple stresses (mixed infections or combined biotic and 
abiotic stress) by sensor systems which needs to be further investigated. 

3.3. E3: Spatial field arrangement on patchy soils and mixed cropping 

Simplifications of landscapes, large field sizes, narrowing of crop 
rotations, and monocultures have resulted in a loss of biological and 
landscape diversity (Batáry et al., 2017). Smart digital technologies 
could enable smaller field sizes with single crops, following the patchi-
ness of soils in a heterogeneous landscape (Fig. 1c), or crop mixtures 
with the same or lower labor inputs (Fig. 1b). However, the response of 
the biophysical system and the economic system is largely unknown. 
Current models are ill-suited to determine optimal mixture composition 
and management at the field and farm scale, limiting possibilities to give 
suitable recommendations for farmers. We also lack tools to evaluate or 
design policies that would reward the adoption of new field arrange-
ments that maximize beneficial landscape effects (Barghusen et al., 
2021). 

Current research aims to identify and evaluate new field arrange-
ments for diversified cropping systems such as crop mixtures and 
adapted field geometries (‘patch cropping’) with respect to their impact 
on agro-ecosystems (Hernández-Ochoa et al., 2022). Developing the 
required field- and landscape models, benefits from newly developed 
advanced data acquisition and analysis tools to evaluate the perfor-
mance of diversified cropping systems (RG1, RG2) as well as methods for 
assimilation of monitoring data with high spatial and temporal resolu-
tion into crop and agro-ecosystem models (RG2, RG3). Improved sensing 
and modeling also enable defining crop traits indicative of mixing 
compatibility and rules for improved decision-making to identify 
optimal field sizes, shapes, and neighbourhoods and to quantify 
ecosystem (dis)services. To assess the full potential of new field ar-
rangements at a landscape scale, it is crucial to assess the diffusion 
process as well as potential feedback effects (RG4). Further effects might 

strongly depend on where patchy or mixed cropping is applied (e.g., 
potential larger effect in more homogenous landscapes) requiring 
spatially explicit modeling of adoption (RG4). 

Important first steps have already been realized within our research 
project PhenoRob. Approaches to estimate the crop cover per species 
using high-resolution RGB imagery (Marashdeh et al., 2022), as well as 
species-specific measurements of the below-ground competition in 
cereal/legume mixtures, were developed to improve field-scale agro--
ecosystem models. Additionally, we set up a large field experiment 
making positive use of field heterogeneities (Fig. 1b). Smaller plots, with 
diverse and site-specific crop rotations, help to strengthen synergies and 
interactions between crops and landscape elements such as flower strips. 
Non-invasive soil sensing such as gamma spectroscopy, x-ray fluores-
cence, and mid-wavelength infrared readings are currently implemented 
for apriori providing soil information to the optimization of the field 
designs (Fig. 1c). The results of those experiments allow for setting up 
newly developed crop mixture models and simulating performance and 
ecosystem service provision of a large range of cropping systems 
(Fig. 1k, m). 

4. Steps forward to close the gaps 

So far, we have pointed out, which major research gaps need to be 
closed on the way towards integrated smart digital solutions for sus-
tainable crop production. We also illustrated ideas on how to close the 
gaps and the benefits of closing them by giving some examples from our 
related research activities. In every involved scientific community, there 
are certainly ideas for addressing specific challenges in the context of the 
mentioned gaps. However, as we outlined before, we strongly believe, 
that closing the gaps requires a strong interdisciplinary collaboration 
between plant and agricultural science, computer science, ecologists, 
economists, robotics, and geodesy. However, this is easier said than 
done. Fostering and enabling this interdisciplinary collaboration re-
quires strategic research programs that coherently align complementary 
scientific expertise around relevant use cases. Based on our experience 
from our own large-scale interdisciplinary research project “PhenoRob - 
Robotics and Phenotyping Towards Sustainable Crop Production” we 
propose several measures for this. The measures consist of (i) common 
experimental platforms and central databases, (ii) interdisciplinary 
training, and (iii) institutional cooperation and networks.  

(i) Central elements in a research program on sustainable crop 
production are core experimental platforms, which could be 
agricultural field and landscape experiments of different spatial 
and temporal scales and foci. All data collected in the experi-
ments should be stored and managed in a dedicated customized 
database and should be accessible by all researchers of the pro-
gramme. These experimental platforms and the database provide 
a collaboration and communication environment for researchers 
from different disciplines. Data with different spatial and tem-
poral resolutions play a major role in all of the mentioned disci-
plines, but how to create them, how to process them, and 
especially how to use them can be very different. Building a 
common language and understanding around the creation, rep-
resentation, provision, and utilization of any kind of data in the 
agricultural context is a booster for the necessary interdisci-
plinary work.  

(ii) Additional measures to foster interdisciplinary collaboration and 
to develop a common language are seminar and lecture series, 
and interdisciplinary undergraduate and graduate teaching ac-
tivities (including joint PhD supervision). It is important, that the 
seminars and lectures are specially designed to enable the un-
derstanding of the questions and methods used in other disci-
plines of the research program. This training should be 
implemented throughout all levels of scientific work, ranging 
from undergraduates to professors. 
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(iii) A third important structural measure is the development of 
institutional cooperation and networks. They should be promoted 
at national and international levels to pool resources, knowledge, 
and expertise to foster innovation, improve efficiency, and create 
shared value. One example in this direction is the DigiCrop.Net 
network, which has been set up in the context of technology- 
driven approaches towards sustainable crop production. Beyond 
research cooperations, collaboration should include stakeholder 
networks, including companies, farmers, and start-ups to address 
collective challenges, to drive innovation, and to create positive 
social impact. 

5. Conclusion and outlook 

Smart digital technologies offer opportunities for sustainable crop 
production. In this paper, we present a research agenda that needs to be 
addressed by such programs. By focusing on high-risk/high-reward 
research questions they can provide innovation impulses to existing 
public and private Research and Development (R&D) that develop dig-
ital farming technology for specific applications and accelerate the 
transformation towards sustainable crop production. 
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