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Structural alterations as a predictor of depression — a 7-Tesla
MRI-based multidimensional approach
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Major depressive disorder (MDD) is a debilitating condition that is associated with changes in the default-mode network (DMN).
Commonly reported features include alterations in gray matter volume (GMV), cortical thickness (CoT), and gyrification. A
comprehensive examination of these variables using ultra-high field strength MRI and machine learning methods may lead to novel
insights into the pathophysiology of depression and help develop a more personalized therapy. Cerebral images were obtained
from 41 patients with confirmed MDD and 41 healthy controls, matched for age and gender, using a 7-T-MRI. DMN parcellation
followed the Schaefer 600 Atlas. Based on the results of a mixed-model repeated measures analysis, a support vector machine
(SVM) calculation followed by leave-one-out cross-validation determined the predictive ability of structural features for the
presence of MDD. A consecutive permutation procedure identified which areas contributed to the classification results. Correlating
changes in those areas with BDI-Il and AMDP scores added an explanatory aspect to this study. CoT did not delineate relevant
changes in the mixed model and was excluded from further analysis. The SVM achieved a good prediction accuracy of 0.76 using
gyrification data. GMV was not a viable predictor for disease presence, however, it correlated in the left parahippocampal gyrus with
disease severity as measured by the BDI-Il. Structural data of the DMN may therefore contain the necessary information to predict
the presence of MDD. However, there may be inherent challenges with predicting disease course or treatment response due to
high GMV variance and the static character of gyrification. Further improvements in data acquisition and analysis may help to

overcome these difficulties.
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INTRODUCTION

Major depressive disorder (MDD) is a debilitating condition with
complex origins, and its development has been linked to various
cerebral regions and brain networks [1]. Improving our ability of
treating this disease is of high socioeconomic interest since MDD is
a leading cause of disability [2]. However, major advances in the
effectiveness of pharmaceutical therapy have remained elusive for
many decades. This emphasizes the need for precision medicine
that administers the medication type with the highest likelihood of
success in each individual case. Such a prediction of disease course
needs to be informed by variables that reflect on the underlying
pathological process. One of the most intuitive candidates for such
a variable is the structural data of the individual brain. Differences in
structural disruption may reflect on subtle differences in pathophy-
siology that influence not only the course of disease but also what
kind of therapy is most effective [3]. High-resolution images as
acquired through structural MRI may contain information enabling
a machine learning algorithm to predict the outcome of therapy [4].
However, first, there needs to be an estimation of how much
variance is actually contained in structural MRI data. The variance
present in the contrast between a patient and a healthy control
could be a viable basis for such an estimate.

Simply scanning the entire brain and using all the measured
values for predicting disease presence might not be advisable. In
order to reduce the risk of overfitting and increase the general-
izability of the results of a machine learning calculation, it is
necessary to pre-select the information provided to the algorithm
[5]. Since it is the question of persistence or regredience of
symptoms that lies at the heart of the described endeavors, it
might be prudent to focus on structures with a clear association to
relevant and distinct symptomatology. One of the most notable
networks implicated in MDD is the default-mode network (DMN)
[6], which is known for being active during relaxed, undirected
mental activity [7]. In MDD patients, altered connectivity in the
DMN is associated with a tendency of rumination that prevents a
state of calm relaxation [8]. Fittingly, prior research by both regular
[9-11] and ultra-high [12, 13] field strength MRI has shown
abnormalities in the structural features of the DMN. Predicting the
presence or absence of MDD based on the structures of this
network might be a first step towards using MRI data in the
determination of an individual therapy approach. For our analysis,
we used the Schaefer Atlas 600, which divides the brain into 600
different areas that are assigned to seventeen different networks,
one of which is the DMN [14, 15]. Since this atlas allows for the
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fine-grained analysis of both volume and surface parameters it is
particularly suited for this investigation.

Equally important to the question of which regions to investigate is
the determination of the structural features to be included in the
machine learning calculation. These features should reflect on both
dynamic processes and stable predisposing factors to contain a
maximum of relevant information. To this end, we examined gray
matter volume (GMV), cortical thickness (CoT), and gyrification
[16, 17]. Reductions in GMV are known to occur in MDD patients
[9, 18] and CoT abnormalities have been identified in neurodegen-
erative diseases, schizophrenia, dissociative seizures, and depression
[19-22]. Both features may be influenced by symptom severity and
have thus a somewhat dynamic character [18, 23]. Gyrification helps
to increase surface area and connectivity and may be a marker for a
vulnerability to suffering from psychiatric diseases [5, 17, 24]. It has
been proposed that gyrification is strongly influenced by neurode-
velopmental and genetic factors [25], suggesting a certain degree of
stability that does not change during the course of the disease. Thus,
these three features should complement each other and contain the
necessary data to inform about disease presence and activity.

Structural images were acquired from MDD patients and healthy
participants using ultra-high field 7-Tesla-MRI to ascertain fine-
grained, comprehensive data. The high field strength allows for an
improved image resolution, contrast ratio, and signal-to-noise ratio
(SNR) [26, 27]. These factors led to better detection of pathologic
changes in various other fields like chronic inflammatory processes,
ischemia, or dementia [28-31]. This more accurate characterization of
cerebral pathologies contributes to the novelty of this investigation
[32]. Analysis was conducted using a support vector machine (SVM),
which constitutes a machine learning classifying algorithm very well
suited for high dimensional data sets [33]. Prior knowledge about the
DMN and its role in depressive pathophysiology determined the first
step of feature extraction from the Schaefer Atlas [34]. To further
reduce noise in the data, only those areas that delineated significant
results in an initial statistical investigation were included. In order to
add an explanatory aspect to the predictive character of this study a
multiple regression analysis was used to correlate the structural data
important for the classification model with disease severity.

We hypothesize that the chosen combination of ultra-high-
resolution structural features, which reflect on both the volume
and surface parameters of DMN regions, will enable the SVM to
achieve good predictive accuracy. This is to our knowledge the
first attempt to investigate the DMN using both ultra-high field
strength MRl and machine learning techniques. Its results will
inform on the predictive capabilities of structural MRI in the
context of depressive disease.

METHODS

Forty-one MDD patients treated at the Universitatsklinik Aachen (mean
age = 32.07, standard deviation = 12.00, 18 females) were matched for age
and gender with forty-one healthy controls (mean age = 29.00, standard
deviation = 10.52, 15 females) and recruited for our study. There were no
significant age or gender differences between groups (age: t-test with
p = 0.221, gender: chi-square-test with p = 0.499). Similar sample sizes have
been successfully used for comparable analyses in the previous literature
[33]. Patients currently suffering from an MDD with psychotic symptoms
according to the ICD-10 and DSM-V criteria were excluded from the analysis.
Healthy controls had no current or lifetime neurologic or psychiatric diseases
according to the M.IN.I. [35], and had no history of concussion or head injury.
Handedness was determined using the Edinburgh Handedness Inventory
[36]. Only right-handed participants were included. Qualified study
personnel evaluated the described diagnostic criteria. All volunteers received
financial compensation for their participation and additional travel expenses,
if applicable. Patients or controls with MRI contraindications or unstable
medical conditions on the day of the scan were excluded.

Depressive symptomology was measured with the Beck Depression
Inventory (BDI-Il; range 0-63) [37] and the Arbeitsgemeinschaft fiir Methodik
und Dokumentation in der Psychiatrie (AMDP) system. The AMDP was
developed for the objective monitoring of psychiatric therapy and is mainly
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used in German-speaking countries [38]. Assessments took place within a
week of the MRI scan. All participants gave fully informed written consent
prior to the investigation. This protocol was approved by the local Ethics
Committee of the Universitatsklinik Aachen. All methods were performed in
accordance with the relevant guidelines and regulations.

MRI acquisition

MRI data acquisition was performed with a 7T Magnetom Terra scanner
(Siemens Healthineers, Erlangen, Germany) equipped with a 1Tx 32Rx
Head Coil 7T Clinical from Nova Medical (Wilmington, MA, USA) at the
Institute of Neuroscience and Medicine-4 (INM-4), Forschungszentrum
Jilich. MP2RAGE is a variation of the standard magnetization-prepared
rapid gradient echo (MPRAGE) sequence. It acquires two gradient echo
images with different inversion time (Tl) and flip angle (FA) (inversion
image 1 (INV1) TI=840ms, flip, FA=5° INV2 TI=2370 ms, FA =6°). The
other sequence-related parameters were similar for both gradient echo
images: echo time (TE) = 1.99 ms; repetition time (TR) =4500 ms for SNR
optimization. The image matrix was set to 320x 300 with a 0.75 mm
isotropic resolution in 208 sagittal slices. The T1 weighted anatomical
images referred to here were produced by combining the two gradient
echo images by means of a ratio, as explained by Marques et al. [39]. The
combined image was largely free from proton density contrast, T2
contrast, reception bias field, and first-order transmit field inhomogeneity.

Structural MR data preprocessing

The raw DICOM scans were converted to 3D T1 weighted Neuroimaging
Informatics Technology Initiative (NIfTI) format using MRIcron software
(https://www.nitrc.org/projects/mricron). The 3D T1 weighted images were
visually audited to check for poor scan quality, artifacts, and abnormal
tissues using FSL View software (https:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FslView). In the next step, VBM was performed using CAT12.8 (version
1907)  (http://www.neuro.uni-jena.de/cat/index.html#VBM),  which is
designed to work with the Statistical Parametric Mapping (SPM12) toolbox
(https://www fil.ion.ucl.ac.uk/spm/software/spm12/) and MATLAB (version
9.13 (R2022b)). VBM preprocessing was performed using CAT12.8 with
default settings, which included correction for bias field inhomogeneities
and skull stripping followed by SPM12 affine registration. The 3D T1
weighted structural images were segmented into three voxel classes: gray
matter, white matter, and cerebrospinal fluid. The GMVs and surface
parameters of the DMN were calculated with the Schaefer Atlas 600 [14],
and 116 GMV and surface areas were identified for further analysis. These
areas are distributed among the following regions: inferior parietal lobule,
dorsal prefrontal cortex, medial prefrontal cortex, ventral prefrontal cortex,
lateral prefrontal cortex, precuneus posterior cingulate cortex, retro-
splenial, anterior temporal, temporal, and parahippocampal cortex. The
mean value of gray matter voxels within the subregions was computed for
each region of interest in the native space of each subject. Following the
voxel-based processing, the surface-based processing steps were per-
formed using CAT12.8 with default settings. Surface analysis employed the
provided pipeline and included the measurement of gyrification and CoT.
Gyrification allows for the measurement of 3-dimensional surface
complexity [40], and its calculation was based on the absolute mean
curvature [41]. Using a projection-based thickness method [16], the CoT
estimation and reconstruction of the central surface were completed in a
single step. Subsequently, the topological defects were corrected using
spherical harmonics [29], followed by surface refinement, resulting in the
final central surface mesh. The individual central surfaces were spatially
registered to the ‘FsAverage’ template of Freesurfer using spherical
mapping with minimal distortions [42]. Finally, the local thickness values
were transferred onto the ‘FsAverage’ template. CoT, as well as gyrification
analysis, was performed on the basis of the Schaefer Atlas parcellation.

Statistical analysis

Statistical analysis was performed using the R software version 4.4.1.
Demographic and clinical data were analyzed using a chi-squared test (for
gender) and an independent sample t-test (for age) with a significance
threshold of p <0.05. Differences in mean GMV, gyrification, and CoT
within the DMN between the MDD patients and the healthy control group
were calculated using a mixed-model repeated measures (MMRM) analysis
using the “nlme” package [43]. Three models were defined with the
features GMV, CoT, and gyrification as the dependent variables. Predictors
were group affiliation, regions, age, and gender (in the case of GMV
additionally total intracranial volume (TIV)). Random factors were the
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Partial Regression of BDI-II on left PHC 2 GMV
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Fig. 1
(prar = 0.03).

different subjects and areas. In the case of significant interaction between
group affiliation and areas, this was followed by the calculation of
intergroup contrasts in specific areas with the help of the “emmeans”
function from the “emmeans” package [44]. Furthermore, a multiple linear
regression analysis was performed in order to elucidate the association
between BDI-Il and AMDP scores with structural abnormalities in MDD
patients. Included here were areas reaching at least a permutation
importance of 0.01 in the SVM. Adjustments were made for TIV, age, and
gender for the volume and for age and gender for the surface analyses.
Corrections for multiple comparisons were performed for each feature
individually using a false-discovery rate (FDR) on the p-value outputs.

Machine learning

A pipeline was created consisting of the steps of data scaling and SVM on
Python scikit-learn (version 1.2.2) with the help of pandas and numpy
[45, 46]. As a first step, features were normalized using the Z-score for
further processing. Here, data were centered to the mean and component-
wise scaled to unit variance [45]. Given the relatively limited number of
measurements and the high dimensionality of the data set, a careful pre-
selection of variables for the best SYM performance was necessary. This
was achieved by only considering those DMN areas that delineated
significant contrasts in the MMRM analysis. The tuning variables in the SVM
were the error penalty C, which influences the likelihood of overfitting;
gamma, which represents the “spread” of the kernel [47]; and finally, the
kernel type, which was chosen between default (linear), polynomial and a
Gaussian kernel (radial basis function (rbf)) [48]. This kernel has the
advantage of being able to separate complex data sets through a kernel
trick that generalizes them to a non-linear hyperplane [49]. Parameter
optimization was achieved using the Grid Search function provided by
Python. In a further step, leave-one-out cross-validation was performed to
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minimize the impact of random effects. These steps were undertaken
separately for each of the included features. Finally, a permutation feature
importance was calculated for each model [50, 51] using the Python scikit-
learn (version 1.2.2) toolbox with n_repeats =10. Permutation feature
importance describes the decrease in model accuracy when a specific
variable is randomly shuffled [52]. This indicates how much of the SVM
classification performance depends on this value.

RESULTS

Statistical analysis

The MMRM analysis delineated for the interaction group*areas the
following results: GMV x> (115)=29597, p<0001, CoT X
(115)=101.57, p =0.810, gyrification )(2 (115) =153.79, p =0.009.
Contrasts between patients and controls were significant for GMV in
the left inferior parietal lobule, the bilateral dorsal, medial, lateral,
ventral, and left ventrolateral PFC as well as the bilateral temporal
cortex and parahippocampal cortex (PHC) (Supplementary Table 1).
Relevant gyrification contrasts were found in the areas of left
precunes/PCC 3, right precuneus/PCC 7 and 8, medial PFC 2 and 8,
left ventral PFC 6, left retrosplenial cortex 1 and right retrosplenial
cortex 1. GMV areas with permutation importance >0.01 were the
left Temp 4, left PHC 2, right medial PFC 1, right medial PFC 5, right
anterior Temp 2, and right PHC 2 (Fig. 2D).

Regression analysis delineated a negative correlation with BDI-I
test scores in the left PHC 2 ( = —0.415, pss, = 0.03) (Figs. 1 and 3).
AMDP score results did not demonstrate significant correlations in
the regression analysis. Correlating the eight areas identified by

SPRINGER NATURE

2519



. Schnellbacher et al.

2520

Patients

True label

Controls

Patients Controls
Predicted label

c

Ventral PFC 6 left
Precuneus/PCC 7 right
Medial PFC 2 right
Medial PFC 8 right
Precuneus/PCC 3 left
Retrosplenial 1 right
Retrosplenial 1 left

Precuneus/PCC 8 right

0.04

006 008 010 012 014 016 0.18

Permutation importance

Anterior temporal cortex 2 right

0.60

Patients 0.38

0.55

0.50

True label

0.45

Controls 0.38

0.40

Patients

Controls
Predicted label

D

Temporal cortex 4 left

PHC 2 left

Medial PFC 1 right

PHC 2 right

Medial PFC 5 right

0.02 0.03
Permutation importance

0.01

0.00 0.04 0.05

Fig.2 Convolution maps of the SVMs. Each field contains the ratio of correct classifications. A SVM based on gyrification. B SVM based on
GMV. C Results of the permutation procedure of the gyrification variables. D Results of the permutation procedure of the GMV variables. List

only represents the most significant results.

the permutation procedure using the feature gyrification with BDI-
Il or AMDP scores delineated no significant results.

Support vector machine

Using the GMV data the SVM (tuning parameters: C-value: 10, y-value:
0.001, kernel type: rbf) reached a classifying accuracy of 0.48
(sensitivity (recall) 0.62, specificity: 0.38). Accuracy is defined here as
the ratio between the number of correct predictions and the total
number of predictions. The SVM using the feature gyrification (tuning
parameters: C-value: 10, y-value: 0.01, kernel type: rbf) delineated an
accuracy of 0.76 (sensitivity (recall) 0.75, specificity: 0.77) (Fig. 2A).
Permutation importance in the latter analysis was particularly marked
in the ventral and medial PFC as well as the precuneus/PCC (Fig. 2C).
The SVM provided with GMV data only achieved a low accuracy of
0.48 (tuning parameters: C-value: 10, y-value: 0.001, kernel type: rbf)
(sensitivity (recall) 0.62, specificity: 0.38) (Fig. 2B). Permutation
importance was accordingly minimal with only the temporal cortex
4 and the left PHC 2 reaching values > 0.04 (Fig. 2D).

DISCUSSION

By using ultra-high field MRI provided gyrification data of the DMN
the classifying SVM achieved good prediction accuracy. The
variance was concentrated on the PFC and PCC. Volume
alterations were not effective in separating patients from controls.
There were, however, signs that the GMV of the left PHC correlates
with symptom severity. These results elucidate both the dynamic
and static characteristics of structural features during depressive
disease. They also hint at the challenges associated with
predicting symptom development based on structural markers.

Predicting disease

GMV contrasts between patients and controls were significant in
parts of the PFC as well as the temporal cortex and PHC. The

SPRINGER NATURE

delineated volume abnormalities are in line with the previous
literature. Parahippocampal regions of unmedicated MDD patients
are known to have lower volumes compared to medicated
patients [53]. In studies on macaque primates, the PHC has been
shown to be vital for non-navigational spatial memory [54].
Furthermore, it has been implicated in visuo-spatial processing
and memory performance [55, 56], which are compromised in
depressed patients [57]. Increased connectivity between the PCC
and the PHC is a lasting “scar” and a hallmark of recurrent
depression [58]. The temporal cortex is also subject to changes in
cases of MDD [59]. Its pathophysiological connection can be seen,
for example, in the effects of electroconvulsive therapy, which
induces a recovery of both frontal and temporal functions in
patients [60]. Additionally, dopaminergic abnormalities in the
temporal cortex correlate with depression severity [61], and
volume reductions in both the temporal cortex and the
hippocampus can be found in suicidal patients [62]. Surprisingly,
the SVM was not able to reliably predict the presence of disease
based on the GMV of these regions. It only achieved a low
predictive accuracy of 0.48 (Fig. 2B). Gyrification, on the other
hand, predicted the presence of MDD with a good accuracy of
0.76 (Fig. 2A). This was achieved by providing the SVM with data
of areas in the PCC, PFC as well as the retrosplenial cortex.
According to the permutation procedure, the precuneus/PCC and
the ventral as well as medial PFC were particularly important for
model performance (Fig. 2C). The PFC as a whole is known to be
strongly affected by MDD [63]. Gyrification changes in the ventral
PFC are a biomarker of depressive disease [64], while the medial
PFC plays a major role in the development of resilience against
stressors. It is activated by the presence of control over a stressor
and mediates a regulating effect on stress-responsive structures of
the limbic system and the brain stem [65]. Additionally, the medial
PFC has long been known for its role in memory and decision-
making [66], and it seems to support navigation through the

Molecular Psychiatry (2025) 30:2517 — 2524
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Fig. 3 XXX. Blue: Left parahippocampal gyrus, which negatively correlated with symptom severity as measured by the BDI-Il. Red: DMN areas
that delineated a significant intergroup gyrification contrast in the mixed-model repeated measures analysis.

exploitation-exploration dilemmas of an ever-changing world [67].
Furthermore, it is highly interconnected with subcortical regions
like the amygdala and the hippocampus and is important for top-
down executive control [68]. Likewise, the aberrant gyrification
seen in the precuneus/PCC reflects on current knowledge [69].
Taylor et al. demonstrated that normalizing connectivity between
the dorsolateral PFC and the precuneus/PCC through neurofeed-
back leads to a mitigation of depressive symptoms [70], while
increased connectivity between the PCC and the orbital frontal
cortex is associated with MDD [71].

This contrast between a low predictive capability for GMV and a
high one for gyrification suggests that volume might be subject to
a much greater natural variance that makes a separation between
diseased and healthy solely on its basis difficult. As stated in the
introduction gyrification may be reflective of neurodevelopmental
factors and more stable across the lifespan in comparison to GMV
[72, 73]. Fittingly, our regression analysis did not delineate a
significant correlation between gyrification and symptom severity
in the identified areas. This emphasizes the importance of
predisposing factors determined at conception or during the
early neurodevelopmental years for the presence of MDD. Given
the strong heritability of depression [74] this seems plausible. It is
notable, that prediction did not only reach a high sensitivity but
also specificity (Fig. 3A). Patients were recognized as patients with
an accuracy of 0.77 and controls as controls with an accuracy of
0.75. However, in real-life conditions, there might be the danger of
false positive results in the case of patients with recurring but fully
remitted depression and healthy individuals who are at risk of
developing MDD but never suffered from it.

Considering that the CoT measurements were not used by the
SVM, due to the not significant interaction between the factors
groups and areas, and that volume information did not achieve
acceptable classification accuracy, only eight areas of 348 of our
multidimensional data set were decisive. This shows how vitally
important dimension reduction is for the future of machine
learning techniques in medicine. It signals that a hypothesis-
driven approach, where prior knowledge leads to a focus on only
the relevant information, combined with classical statistics may be
helpful even in the context of novel machine learning methods.

Dynamic and static alterations

At the core of this investigation is the preparation of future
machine learning investigations that will attempt to predict
symptom development under various conditions e.g. a specific
pharmacological therapy. To this end, it is useful to include also
dynamic aspects in our analysis and to expand on its primarily
predictive character with explanatory classical statistics. The
correlation between parahippocampal GMV and symptom sever-
ity, as measured by multiple regression analysis, hints at a
dynamic process influenced by or influencing the disease course.
In contrast, the gyrification alterations identified by the SVM and
subsequent permutation procedure were not subject to modifica-
tion through disease severity and are most likely more static.
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These two distinct qualities of changes enable a differentiated
interpretation of the role of the DMN in MDD pathophysiology.

There is an overlap between the “rich-club” of well-connected
cerebral hub regions and the DMN [75, 76]. Such hubs tend to be
vulnerable to pathological processes [77, 78], partly because their
high level of interconnectivity leads to an increase in micro-
structural complexity and metabolic strain. This circumstance
could be a contributing factor to our results since the only area
clearly correlating with symptomatology is part of this “rich-club”.
Metabolic strain implies a dynamic nature since it is subject to
factors that change over time, like stress levels, nutrition, fitness,
etc. [79, 80], which may contribute to the mostly episodic nature
of depressive disease [81]. In our analysis, volume alterations in
the left PHC correlated with disease severity as measured by the
BDI-Il, indicating the presence of such dynamism. Hypothalamic-
pituitary-adrenocortical axis (HPA) dysregulation caused by
prolonged stress leads to alterations in the PHC [82, 83]
supporting this notion. Fittingly, a reduction of stress be it
through physical exercise, meditation, or adequate sleep quality,
often has a positive influence on disease course [84-871.

We found thus signs that both episodes of stress [88] and
genetic and neurodevelopmental factors [74, 89] contribute to the
development of MDD. This harmonizes well with the “multiple hit”
theory often used to describe the pathogeneses of psychiatric
diseases. This means that a certain predisposition for the
development of pathology is inherited, but the clinical picture of
MDD actually only occurs if other factors are additionally
experienced by the individual. These findings emphasize the
benefit of combining several morphological parameters together
in one analysis since our results were able to reflect on both
dynamic changes and static signs of vulnerability.

Conclusion and limitations

Supervised machine learning methods, such as an SVM, can
achieve good predictive accuracy for classifying MDD patients and
healthy controls. The ultra-high resolution of the MRI images
contributed to the quality and quantity of the information
provided to the algorithm enabling its good results. The MMRM
analysis was valuable for feature selection. In addition, regression
analysis found signs of volume changes depending on symptom
severity in the left PHC. Gyrification alterations in the lateral
medial PFC as well as the PCC influenced the discriminatory power
of the machine learning algorithm. Structural alterations in MDD
have both static and dynamic characteristics. The fact that only
gyrification data helped in classification may hint at future
problems of predicting disease course since the relevant more
dynamic aspects of brain morphology might contain a high
natural degree of individual variability. Future larger data sets may
help to overcome these difficulties. The relatively small study
population and the benign data environment somewhat limit the
interpretability of these results. The study population was
relatively homogeneous and not representative of a general
psychiatric patient collective. A further limiting factor is that the

SPRINGER NATURE

2521



G.J. Schnellbacher et al.

2522

exact type of therapy was not considered and could have a
confounding effect. Thus, it cannot be assumed that the
demonstrated results can be replicated in a normal clinical
environment. However, despite these factors, the results remain
promising since they demonstrate that purely structural ultra-high
field 7-T-MRI data already contains the necessary information to
adequately discriminate between groups. Novel machine learning
algorithms will increasingly support researchers in extracting
information from the ever-growing fundus of neuroimaging data.
The results thus encourage further machine learning-supported
ultra-high field MRI investigations of morphological alterations in
affective disease.
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