001033746 001__ 1033746
001033746 005__ 20241217215530.0
001033746 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06597
001033746 037__ $$aFZJ-2024-06597
001033746 041__ $$aEnglish
001033746 1001_ $$0P:(DE-Juel1)190224$$aLober, Melissa$$b0$$eCorresponding author$$ufzj
001033746 1112_ $$aNEST Conference 2024$$cvirtual$$d2024-06-17 - 2024-06-18$$wvirtual
001033746 245__ $$aExploiting network structure in NEST: Efficient communication in brain-scale simulations
001033746 260__ $$c2024
001033746 3367_ $$033$$2EndNote$$aConference Paper
001033746 3367_ $$2BibTeX$$aINPROCEEDINGS
001033746 3367_ $$2DRIVER$$aconferenceObject
001033746 3367_ $$2ORCID$$aCONFERENCE_POSTER
001033746 3367_ $$2DataCite$$aOutput Types/Conference Poster
001033746 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1734424007_31226$$xAfter Call
001033746 502__ $$cRWTH Aachen
001033746 520__ $$aThe communication of spike events constitutes a major bottleneck in simulations of brain-scale networks with realistic connectivity. Models such as the multi-area model1 not only have a dense connectivity within areas but also between areas. Synaptic transmission delays within an area can be as short as 0.1 ms and therefore simulations require frequent spike communication between compute nodes to maintain causality in the network dynamics2. This poses a challenge to the conventional round-robin scheme used to distribute neurons uniformly across compute nodes disregarding the network’s specific topology.We target this challenge and propose a structure-aware neuron distribution scheme along with a novel spike-communication framework that exploits this approach in order to make communication in large-scale distributed simulations more efficient. In the structure-aware neuron distribution scheme, neurons are placed on the hardware in a way that mimics the network’s topology. Paired with a communication framework that distinguishes local short delay intra-area communication and global long delay inter-area communication, the structure-aware approach minimizes the costly global communication and thereby reduces simulation time. Our prototype implementation is fully tested and was developed within the neuronal simulator tool NEST3.For the benchmarking of our approach, we developed a multi-area model that resembles the macaque multi-area model in terms of connectivity and work load, while being more easily scalable as it retains constant activity levels. We show that the new strategy significantly reduces communication time in weak-scaling experiments and the effect increases with an increasing number of compute nodes.[1] Schmidt et al., PLoS Comput Biol, 14(10), 1-38, 2018[2] Morrison & Diesmann, Springer Berlin Heidelberg, pp 267-278, 2008[3] Gewaltig & Diesmann, Scholarpedia 2(4):1430 , 2007
001033746 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001033746 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001033746 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x2
001033746 536__ $$0G:(DE-Juel1)BMBF-03ZU1106CB$$aBMBF 03ZU1106CB - NeuroSys: Algorithm-Hardware Co-Design (Projekt C) - B (BMBF-03ZU1106CB)$$cBMBF-03ZU1106CB$$x3
001033746 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x4
001033746 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b1$$ufzj
001033746 7001_ $$0P:(DE-Juel1)195639$$aKunkel, Susanne$$b2$$ufzj
001033746 8564_ $$uhttps://juser.fz-juelich.de/record/1033746/files/Melissa_Lober_NEST_Conference_2024.pdf$$yOpenAccess
001033746 909CO $$ooai:juser.fz-juelich.de:1033746$$popenaire$$popen_access$$pVDB$$pdriver$$pec_fundedresources
001033746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190224$$aForschungszentrum Jülich$$b0$$kFZJ
001033746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b1$$kFZJ
001033746 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195639$$aForschungszentrum Jülich$$b2$$kFZJ
001033746 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001033746 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001033746 9141_ $$y2024
001033746 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033746 920__ $$lno
001033746 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0
001033746 9201_ $$0I:(DE-Juel1)PGI-15-20210701$$kPGI-15$$lNeuromorphic Software Eco System$$x1
001033746 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001033746 980__ $$aposter
001033746 980__ $$aVDB
001033746 980__ $$aUNRESTRICTED
001033746 980__ $$aI:(DE-Juel1)IAS-6-20130828
001033746 980__ $$aI:(DE-Juel1)PGI-15-20210701
001033746 980__ $$aI:(DE-Juel1)INM-10-20170113
001033746 9801_ $$aFullTexts