001033747 001__ 1033747
001033747 005__ 20241217215530.0
001033747 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06598
001033747 037__ $$aFZJ-2024-06598
001033747 041__ $$aEnglish
001033747 1001_ $$0P:(DE-Juel1)190224$$aLober, Melissa$$b0$$eCorresponding author$$ufzj
001033747 1112_ $$aFederation of European Neuroscience Societies$$cVienna$$d2024-06-25 - 2024-06-29$$gFENS$$wAustria
001033747 245__ $$aExploiting network topology in brain-scale multi-area model simulations
001033747 260__ $$c2024
001033747 3367_ $$033$$2EndNote$$aConference Paper
001033747 3367_ $$2BibTeX$$aINPROCEEDINGS
001033747 3367_ $$2DRIVER$$aconferenceObject
001033747 3367_ $$2ORCID$$aCONFERENCE_POSTER
001033747 3367_ $$2DataCite$$aOutput Types/Conference Poster
001033747 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1734427687_30035$$xAfter Call
001033747 502__ $$cRWTH Aachen
001033747 520__ $$aThe communication of spike events constitutes a major bottleneck in simulations of brain-scale networks with realistic connectivity, as for example, the multi-area model of macaque visual cortex (Schmidt, 2018). The model consists of 32 cortical microcircuits, each representing a downscaled area of the visual cortex at the resolution of single neurons and synapses. Such models not only have a dense connectivity within areas but also between areas. Synaptic transmission delays within an area can be as short as 0.1 ms and therefore simulations require frequent spike communication between compute nodes to maintain causality in the network dynamics (Morrison, 2008). This poses a challenge to the conventional round-robin scheme used to distribute neurons uniformly across compute nodes disregarding the network’s specific topology.We targe­t this challenge and propose a structure-aware neuron distribution scheme along with a novel spike-communication framework that exploits this approach in order to make communication in large-scale distributed simulations more efficient. In the structure-aware neuron distribution scheme, neurons are placed on the hardware in a way that mimics the network’s topology. Paired with a communication framework that distinguishes local short delay intra-area communication and global long delay inter-area communication, the structure-aware approach minimizes the costly global communication and thereby reduces simulation time. Our prototype implementation is fully tested and was developed within the neuronal simulator tool NEST (Gewaltig, 2007).We show that the new strategy significantly reduces communication time in weak-scaling experiments and the effect increases with an increasing number of compute nodes.[1] Schmidt M, Bakker R, Hilgetag CC, Diesmann M & van Albada SJ (2018) Multi-scale account of the network structure of macaque visual cortex. Brain Structure and Function, 223: 1409 https://doi.org/10.1007/s00429-017-1554-4[2] Schmidt M, Bakker R, Shen K, Bezgin B, Diesmann M & van Albada SJ (2018) A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque cortex. PLOS Computational Biology, 14(9): e1006359. https://doi.org/10.1371/journal.pcbi.1006359[3] Morrison A, Diesmann M (2008) Maintaining Causality in Discrete Time Neuronal Network Simulations. Springer Berlin Heidelberg, pp 267-278. https://doi.org/10.1007/978-3-540-73159-7_10 [4] https://nest-simulator.readthedocs.io/enlatest[5] Gewaltig M-O & Diesmann M (2007) NEST (Neural Simulation Tool) Scholarpedia 2(4):1430
001033747 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001033747 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001033747 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x2
001033747 536__ $$0G:(DE-Juel1)BMBF-03ZU1106CB$$aBMBF 03ZU1106CB - NeuroSys: Algorithm-Hardware Co-Design (Projekt C) - B (BMBF-03ZU1106CB)$$cBMBF-03ZU1106CB$$x3
001033747 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x4
001033747 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b1$$ufzj
001033747 7001_ $$0P:(DE-Juel1)195639$$aKunkel, Susanne$$b2$$ufzj
001033747 8564_ $$uhttps://juser.fz-juelich.de/record/1033747/files/Melissa_Lober_FENS_2024.pdf$$yOpenAccess
001033747 909CO $$ooai:juser.fz-juelich.de:1033747$$popenaire$$popen_access$$pVDB$$pdriver$$pec_fundedresources
001033747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190224$$aForschungszentrum Jülich$$b0$$kFZJ
001033747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b1$$kFZJ
001033747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195639$$aForschungszentrum Jülich$$b2$$kFZJ
001033747 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001033747 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001033747 9141_ $$y2024
001033747 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033747 920__ $$lno
001033747 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0
001033747 9201_ $$0I:(DE-Juel1)PGI-15-20210701$$kPGI-15$$lNeuromorphic Software Eco System$$x1
001033747 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
001033747 980__ $$aposter
001033747 980__ $$aVDB
001033747 980__ $$aUNRESTRICTED
001033747 980__ $$aI:(DE-Juel1)IAS-6-20130828
001033747 980__ $$aI:(DE-Juel1)PGI-15-20210701
001033747 980__ $$aI:(DE-Juel1)INM-10-20170113
001033747 9801_ $$aFullTexts