001033761 001__ 1033761
001033761 005__ 20250203103252.0
001033761 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06602
001033761 037__ $$aFZJ-2024-06602
001033761 1001_ $$0P:(DE-Juel1)188104$$aBuffat, Jim$$b0$$eCorresponding author$$ufzj
001033761 1112_ $$aGerman Conference on Pattern Recognition 2024$$cMunich$$d2024-09-10 - 2024-09-13$$gGCPR 2024$$wGermany
001033761 245__ $$aDeep Learning Based Prediction of Sun-Induced Fluorescence from HyPlant Imagery
001033761 260__ $$c2024
001033761 3367_ $$033$$2EndNote$$aConference Paper
001033761 3367_ $$2BibTeX$$aINPROCEEDINGS
001033761 3367_ $$2DRIVER$$aconferenceObject
001033761 3367_ $$2ORCID$$aCONFERENCE_POSTER
001033761 3367_ $$2DataCite$$aOutput Types/Conference Poster
001033761 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1734086410_7857$$xAfter Call
001033761 500__ $$aPoster presented as part of the Nectar Track
001033761 502__ $$cUniversity of Bonn
001033761 520__ $$aThe retrieval of sun-induced fluorescence (SIF) from hyperspectral imagery is an ill-posed problem that has been tackled in different ways. We present a novel retrieval method combining semi-supervised deep learning with an existing spectral fitting method. A validation study with in-situ SIF measurements shows high sensitivity of the deep learning method to SIF changes even though systematic shifts deteriorate its absolute prediction accuracy. A detailed analysis of diurnal SIF dynamics and SIF prediction in topographically variable terrain highlights the benefits of this deep learning approach.
001033761 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001033761 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x1
001033761 7001_ $$0P:(DE-HGF)0$$aPato, Miguel$$b1
001033761 7001_ $$0P:(DE-HGF)0$$aAlonso, Kevin$$b2
001033761 7001_ $$0P:(DE-HGF)0$$aAuer, Stefan$$b3
001033761 7001_ $$0P:(DE-HGF)0$$aCarmona, Emiliano$$b4
001033761 7001_ $$0P:(DE-HGF)0$$aMaier, Stefan$$b5
001033761 7001_ $$0P:(DE-HGF)0$$aMüller, Rupert$$b6
001033761 7001_ $$0P:(DE-Juel1)162306$$aRademske, Patrick$$b7$$ufzj
001033761 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b8$$ufzj
001033761 7001_ $$0P:(DE-Juel1)129394$$aScharr, Hanno$$b9$$ufzj
001033761 8564_ $$uhttps://juser.fz-juelich.de/record/1033761/files/FZJ_Poster_hoch.pdf$$yOpenAccess
001033761 909CO $$ooai:juser.fz-juelich.de:1033761$$pdriver$$pVDB$$popen_access$$popenaire
001033761 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188104$$aForschungszentrum Jülich$$b0$$kFZJ
001033761 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDLR$$b1
001033761 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aStarion Group c/o ESA$$b2
001033761 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDLR$$b3
001033761 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDLR$$b4
001033761 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDLR$$b5
001033761 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aDLR$$b6
001033761 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162306$$aForschungszentrum Jülich$$b7$$kFZJ
001033761 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b8$$kFZJ
001033761 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129394$$aForschungszentrum Jülich$$b9$$kFZJ
001033761 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001033761 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
001033761 9141_ $$y2024
001033761 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033761 920__ $$lyes
001033761 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x0
001033761 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
001033761 980__ $$aposter
001033761 980__ $$aVDB
001033761 980__ $$aUNRESTRICTED
001033761 980__ $$aI:(DE-Juel1)IAS-8-20210421
001033761 980__ $$aI:(DE-Juel1)IBG-2-20101118
001033761 9801_ $$aFullTexts