Hauptseite > Publikationsdatenbank > Deep Learning Based Prediction of Sun-Induced Fluorescence from HyPlant Imagery > print |
001 | 1033761 | ||
005 | 20250203103252.0 | ||
024 | 7 | _ | |a 10.34734/FZJ-2024-06602 |2 datacite_doi |
037 | _ | _ | |a FZJ-2024-06602 |
100 | 1 | _ | |a Buffat, Jim |0 P:(DE-Juel1)188104 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a German Conference on Pattern Recognition 2024 |g GCPR 2024 |c Munich |d 2024-09-10 - 2024-09-13 |w Germany |
245 | _ | _ | |a Deep Learning Based Prediction of Sun-Induced Fluorescence from HyPlant Imagery |
260 | _ | _ | |c 2024 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1734086410_7857 |2 PUB:(DE-HGF) |x After Call |
500 | _ | _ | |a Poster presented as part of the Nectar Track |
502 | _ | _ | |c University of Bonn |
520 | _ | _ | |a The retrieval of sun-induced fluorescence (SIF) from hyperspectral imagery is an ill-posed problem that has been tackled in different ways. We present a novel retrieval method combining semi-supervised deep learning with an existing spectral fitting method. A validation study with in-situ SIF measurements shows high sensitivity of the deep learning method to SIF changes even though systematic shifts deteriorate its absolute prediction accuracy. A detailed analysis of diurnal SIF dynamics and SIF prediction in topographically variable terrain highlights the benefits of this deep learning approach. |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) |0 G:(DE-HGF)POF4-2173 |c POF4-217 |f POF IV |x 1 |
700 | 1 | _ | |a Pato, Miguel |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Alonso, Kevin |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Auer, Stefan |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Carmona, Emiliano |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Maier, Stefan |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Müller, Rupert |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Rademske, Patrick |0 P:(DE-Juel1)162306 |b 7 |u fzj |
700 | 1 | _ | |a Rascher, Uwe |0 P:(DE-Juel1)129388 |b 8 |u fzj |
700 | 1 | _ | |a Scharr, Hanno |0 P:(DE-Juel1)129394 |b 9 |u fzj |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1033761/files/FZJ_Poster_hoch.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1033761 |p openaire |p open_access |p VDB |p driver |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)188104 |
910 | 1 | _ | |a DLR |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Starion Group c/o ESA |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a DLR |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a DLR |0 I:(DE-HGF)0 |b 4 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a DLR |0 I:(DE-HGF)0 |b 5 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a DLR |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)162306 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)129388 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)129394 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2173 |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-8-20210421 |k IAS-8 |l Datenanalyse und Maschinenlernen |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 1 |
980 | _ | _ | |a poster |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-8-20210421 |
980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|