001033762 001__ 1033762
001033762 005__ 20250203133241.0
001033762 0247_ $$2doi$$a10.1016/j.rse.2024.114521
001033762 0247_ $$2ISSN$$a0034-4257
001033762 0247_ $$2ISSN$$a1879-0704
001033762 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06603
001033762 0247_ $$2WOS$$aWOS:001367912100001
001033762 037__ $$aFZJ-2024-06603
001033762 041__ $$aEnglish
001033762 082__ $$a550
001033762 1001_ $$0P:(DE-Juel1)186921$$aBendig, Juliane$$b0$$eCorresponding author$$ufzj
001033762 245__ $$aComparing methods for solar-induced fluorescence efficiency estimation using radiative transfer modelling and airborne diurnal measurements of barley crops
001033762 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
001033762 3367_ $$2DRIVER$$aarticle
001033762 3367_ $$2DataCite$$aOutput Types/Journal article
001033762 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734086298_7859
001033762 3367_ $$2BibTeX$$aARTICLE
001033762 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001033762 3367_ $$00$$2EndNote$$aJournal Article
001033762 520__ $$aAbility of remotely sensed solar-induced chlorophyll fluorescence (SIF) to serve as a vegetation productivity andstress indicator is impaired by confounding factors, such as varying crop-specific canopy structure, changingsolar illumination angles, and SIF-soil optical interactions. This study investigates two normalisation approachescorrecting diurnal top-of-canopy SIF observations retrieved from the O2-A absorption feature at 760 nm (F760hereafter) of summer barley crops for these confounding effects. Nadir SIF data was acquired over nine breedingexperimental plots simultaneously by an airborne imaging spectrometer (HyPlant) and a drone-based high-performance point spectrometer (AirSIF). Ancillary measurements, including leaf pigment contents retrievedfrom drone hyperspectral imagery, destructively sampled leaf area index (LAI), and leaf water and dry mattercontents, were used to test the two normalisation methods that are based on: i) the fluorescence correctionvegetation index (FCVI), and ii) three versions of the near-infrared reflectance of vegetation (NIRV). Modelling inthe discrete anisotropic radiative transfer (DART) model revealed close matches for NIRv-based approacheswhen corrected canopy SIF was compared to simulated total chlorophyll fluorescence emitted by leaves (R2 =0.99). Normalisation with the FCVI also performed acceptably (R2 = 0.93), however, it was sensitive to varia-tions in LAI when compared to leaf emitted chlorophyll fluorescence efficiency. Based on the results modelled inDART, the NIRvH1 normalisation was found to have a superior performance over the other NIRv variations andthe FCVI normalisation. Comparison of the SIF escape fractions suggests that the escape fraction estimated withNIRvH1 matched escape fraction extracted from DART more closely. When applied to the experimental droneand airborne nadir canopy SIF data, the agreement between NIRvH1 and FCVI produced chlorophyll fluores-cence efficiency was very high (R2 = 0.93). Nevertheless, NIRvH1 showed higher uncertainties for areas with lowvegetation cover indicating an unaccounted contribution of SIF-soil interactions. The diurnal courses of chlo-rophyll fluorescence efficiency for both approaches differed not significantly from simple normalisation byincoming and apparent photosynthetically active radiation. In conclusion, SIF normalisation with NIRvH1 moreaccurately compensates the effects of canopy structure on top of canopy far red SIF, but when applied to top ofcanopy in-situ data of spring barley, the effects of NIRvH1 and FCVI on the diurnal course of SIF had a similarinfluence.
001033762 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001033762 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x1
001033762 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001033762 7001_ $$0P:(DE-Juel1)203284$$aMalenovský, Zbynĕk$$b1
001033762 7001_ $$0P:(DE-Juel1)172711$$aSiegmann, Bastian$$b2$$ufzj
001033762 7001_ $$0P:(DE-HGF)0$$aKrämer, Julie$$b3
001033762 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b4$$ufzj
001033762 770__ $$aRecent advances in the interpretation of solar-induced chlorophyll fluorescence for remote sensing applications
001033762 773__ $$0PERI:(DE-600)1498713-2$$a10.1016/j.rse.2024.114521$$gVol. 317, p. 114521 -$$p114521 -$$tRemote sensing of environment$$v317$$x0034-4257$$y2025
001033762 8564_ $$uhttps://juser.fz-juelich.de/record/1033762/files/Bendig_etal_2025.pdf$$yOpenAccess
001033762 8767_ $$d2025-01-09$$eHybrid-OA$$jDEAL
001033762 909CO $$ooai:juser.fz-juelich.de:1033762$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001033762 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186921$$aForschungszentrum Jülich$$b0$$kFZJ
001033762 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172711$$aForschungszentrum Jülich$$b2$$kFZJ
001033762 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
001033762 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b4$$kFZJ
001033762 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001033762 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001033762 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001033762 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001033762 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001033762 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001033762 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
001033762 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001033762 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033762 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001033762 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-09$$wger
001033762 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS ENVIRON : 2022$$d2024-12-09
001033762 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001033762 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001033762 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-09
001033762 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-09
001033762 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001033762 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001033762 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-09
001033762 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001033762 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bREMOTE SENS ENVIRON : 2022$$d2024-12-09
001033762 920__ $$lyes
001033762 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001033762 9801_ $$aFullTexts
001033762 980__ $$ajournal
001033762 980__ $$aVDB
001033762 980__ $$aUNRESTRICTED
001033762 980__ $$aI:(DE-Juel1)IBG-2-20101118
001033762 980__ $$aAPC