001     1033762
005     20250203133241.0
024 7 _ |a 10.1016/j.rse.2024.114521
|2 doi
024 7 _ |a 0034-4257
|2 ISSN
024 7 _ |a 1879-0704
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-06603
|2 datacite_doi
024 7 _ |a WOS:001367912100001
|2 WOS
037 _ _ |a FZJ-2024-06603
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Bendig, Juliane
|0 P:(DE-Juel1)186921
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Comparing methods for solar-induced fluorescence efficiency estimation using radiative transfer modelling and airborne diurnal measurements of barley crops
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734086298_7859
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ability of remotely sensed solar-induced chlorophyll fluorescence (SIF) to serve as a vegetation productivity andstress indicator is impaired by confounding factors, such as varying crop-specific canopy structure, changingsolar illumination angles, and SIF-soil optical interactions. This study investigates two normalisation approachescorrecting diurnal top-of-canopy SIF observations retrieved from the O2-A absorption feature at 760 nm (F760hereafter) of summer barley crops for these confounding effects. Nadir SIF data was acquired over nine breedingexperimental plots simultaneously by an airborne imaging spectrometer (HyPlant) and a drone-based high-performance point spectrometer (AirSIF). Ancillary measurements, including leaf pigment contents retrievedfrom drone hyperspectral imagery, destructively sampled leaf area index (LAI), and leaf water and dry mattercontents, were used to test the two normalisation methods that are based on: i) the fluorescence correctionvegetation index (FCVI), and ii) three versions of the near-infrared reflectance of vegetation (NIRV). Modelling inthe discrete anisotropic radiative transfer (DART) model revealed close matches for NIRv-based approacheswhen corrected canopy SIF was compared to simulated total chlorophyll fluorescence emitted by leaves (R2 =0.99). Normalisation with the FCVI also performed acceptably (R2 = 0.93), however, it was sensitive to varia-tions in LAI when compared to leaf emitted chlorophyll fluorescence efficiency. Based on the results modelled inDART, the NIRvH1 normalisation was found to have a superior performance over the other NIRv variations andthe FCVI normalisation. Comparison of the SIF escape fractions suggests that the escape fraction estimated withNIRvH1 matched escape fraction extracted from DART more closely. When applied to the experimental droneand airborne nadir canopy SIF data, the agreement between NIRvH1 and FCVI produced chlorophyll fluores-cence efficiency was very high (R2 = 0.93). Nevertheless, NIRvH1 showed higher uncertainties for areas with lowvegetation cover indicating an unaccounted contribution of SIF-soil interactions. The diurnal courses of chlo-rophyll fluorescence efficiency for both approaches differed not significantly from simple normalisation byincoming and apparent photosynthetically active radiation. In conclusion, SIF normalisation with NIRvH1 moreaccurately compensates the effects of canopy structure on top of canopy far red SIF, but when applied to top ofcanopy in-situ data of spring barley, the effects of NIRvH1 and FCVI on the diurnal course of SIF had a similarinfluence.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Malenovský, Zbynĕk
|0 P:(DE-Juel1)203284
|b 1
700 1 _ |a Siegmann, Bastian
|0 P:(DE-Juel1)172711
|b 2
|u fzj
700 1 _ |a Krämer, Julie
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 4
|u fzj
770 _ _ |a Recent advances in the interpretation of solar-induced chlorophyll fluorescence for remote sensing applications
773 _ _ |a 10.1016/j.rse.2024.114521
|g Vol. 317, p. 114521 -
|0 PERI:(DE-600)1498713-2
|p 114521 -
|t Remote sensing of environment
|v 317
|y 2025
|x 0034-4257
856 4 _ |u https://juser.fz-juelich.de/record/1033762/files/Bendig_etal_2025.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1033762
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186921
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129388
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS ENVIRON : 2022
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b REMOTE SENS ENVIRON : 2022
|d 2024-12-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21