001033770 001__ 1033770
001033770 005__ 20241212210725.0
001033770 0247_ $$2doi$$a10.1101/2024.01.10.574993
001033770 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06611
001033770 037__ $$aFZJ-2024-06611
001033770 1001_ $$0P:(DE-HGF)0$$aLenton, Samuel$$b0
001033770 245__ $$aAmyloid Morphology is Encoded in H-bonds and Electrostatics Interactions Ruling Protein Phase Separation
001033770 260__ $$c2024
001033770 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1734000571_5474
001033770 3367_ $$2ORCID$$aWORKING_PAPER
001033770 3367_ $$028$$2EndNote$$aElectronic Article
001033770 3367_ $$2DRIVER$$apreprint
001033770 3367_ $$2BibTeX$$aARTICLE
001033770 3367_ $$2DataCite$$aOutput Types/Working Paper
001033770 520__ $$aWe report the mechanisms by which H-bonds and electrostatic interactions in ion- protein systems determine phase separation and amyloid formation. Using microscopy, small-angle X-ray scattering and atomistic molecular dynamics simulations, we found that anions interacting with insulin induced phase separation by neutralising the pro- tein charge and forming H-bonds between insulin molecules. The same interaction was responsible for an enhanced insulin conformational stability and resistance to oligomeri- sation. Under aggregation conditions, the anion-protein interaction translated into the activation of a coalescence process, leading to amyloid-like microparticles. This reaction is alternative to conformationally-driven pathways, which give rise to amyloid-like fibrils and core-shell structures, and occur instead in the absence of ion-protein binding. Our findings depict a scenario in which common interactions dictated both phase separation at low temperatures and the occurrence of heterogeneity in the amyloid morphology at high temperatures, similar to what has been reported for protein crystallisation.
001033770 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001033770 588__ $$aDataset connected to CrossRef
001033770 7001_ $$0P:(DE-HGF)0$$aChaaban, Hussein$$b1
001033770 7001_ $$0P:(DE-Juel1)180535$$aKhaled, Mohammed$$b2
001033770 7001_ $$0P:(DE-HGF)0$$aVan de Weert, Marco$$b3
001033770 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b4$$eCorresponding author$$ufzj
001033770 7001_ $$0P:(DE-HGF)0$$aFodera, Vito$$b5
001033770 773__ $$a10.1101/2024.01.10.574993$$p40$$tbioRxiv$$y2024
001033770 8564_ $$uhttps://juser.fz-juelich.de/record/1033770/files/BioRxiv_2024.01.10.574993v1.full.pdf$$yOpenAccess
001033770 909CO $$ooai:juser.fz-juelich.de:1033770$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001033770 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich$$b4$$kFZJ
001033770 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001033770 9141_ $$y2024
001033770 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033770 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001033770 920__ $$lyes
001033770 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x0
001033770 980__ $$apreprint
001033770 980__ $$aVDB
001033770 980__ $$aUNRESTRICTED
001033770 980__ $$aI:(DE-Juel1)IBI-7-20200312
001033770 9801_ $$aFullTexts