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Abstract
Accurate representation of heat fluxes is crucial for understanding land–atmosphere inter-
actions and improving atmospheric simulations. However, a common issue arises with flux
imbalance, where the measured turbulent heat flux tends to be underestimated due to the non-
local effects of atmospheric secondary circulations. This study evaluated four flux imbalance
prediction models by analyzing data from large eddy simulations performed over heteroge-
neous land surfaces. For that, a checkerboard pattern of soil moisture was used to define the
lower boundary conditions for the atmosphere, across heterogeneity scales ranging from50m
to 2.4 km. The results show that the selected models can effectively predict flux imbalance
when provided with proper semi-empirical factors. The presence of two distinct secondary
circulations, thermally-induced mesoscale circulation and turbulent organized structures,
account for the nonlinear effect of the heterogeneity scale on the flux imbalance, but it does
not affect the performance of the selected models. This study suggests that the flux imbalance
prediction models are useful for improving e.g. eddy-covariance measurements. Addition-
ally, a quadrant analysis showed an increasing difference between ejections and sweeps with
height, which explains the decrease and increase of the turbulent heat flux and flux imbal-
ance, respectively, and underscores the importance of accounting for vertical variations in
turbulent fluxes to represent atmospheric processes accurately.
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1 Introduction

The eddy-covariance (EC) technique serves as a tool to determine the exchange of energy,
water, and trace gases at the Land–Atmosphere (L–A) interface, improving our understanding
of the dynamics and the feedback (Baldocchi 2003, 2020; Pastorello et al. 2020). To date,
data from over 900 EC stations worldwide are available through the FLUXNET2015 Dataset
(Pastorello et al. 2020), covering a diverse range of climates and land covers (https://fluxnet.
org/sites/site-summary/, latest access on 30thMay 2024).With the establishment of networks
like AmeriFlux (Novick et al. 2018; Chu et al. 2023), EuroFlux (Aubinet et al. 1999; Franssen
et al. 2010), and AsiaFlux (Yamamoto et al. 2005), numerous additional stations currently
being installed, providing a benchmark for the development, validation, and prediction of
Earth system models (Baldocchi et al. 2001; Rebmann et al. 2018; Pastorello et al. 2020).

A significant challenge in EC measurement arises due to the discrepancy between the
measured sensible (H) and latent (LE) heat fluxes and the available energy (net radiation Rn
minus the ground heat flux G), leading to the surface energy balance (SEB) closure problem
(i.e., H + LE < Rn - G) (Foken 2008; Foken et al. 2010; Mauder et al. 2020). The reason
for this inconsistency is still debated. However, it is generally agreed upon that the inherent
assumptions of the EC method, such as Taylor’s frozen turbulence hypothesis (Mauder et al.
2013), statistical stationarity (Franssen et al. 2010), and horizontal homogeneity (Eder et al.
2015), are often not fulfilled, especially over complex terrains (Mauder et al. 2020). A degree
of underestimation of sensible heat flux between 10–30% has been consistently reported
across sites (Twine et al. 2000;Wilson et al. 2002; Barr et al. 2006; Franssen et al. 2010; Stoy
et al. 2013). The possible sources of error remain a topic of discussion in the community,
including but not limited to measurement errors, missed additional terms related to energy
conversion and storage, inadequate sampling over a finite mean period, phase lag existing
between vertical wind and water vapour, among others. For more details, interested readers
are referred to the review papers (Foken 2008; Mauder et al. 2020; Sun et al. 2021).

Many studies aimed to identify the key factors impacting the flux imbalance (FI , a
ratio of nonlocal scale flux to the total reference flux) through the analysis of EC data,
considering direct measurement states and prognostic variables, including wind speed

(U = (u2 + v2)
1/2

, where u and v are the longitudinal and lateral velocity components along
the cartesian coordinates x and y, respectively), time average interval (T ), friction velocity

u∗ =
(
u′w′2 + v′w′2

)1/4
, convective velocity scale (w∗ =

[
gzi
θv

(w′θ ′)s
]1/3

, g is the grav-

itational acceleration, θv is the potential temperature and zi is the boundary layer height),
stability parameters (z/L or zi /L, L is the Obukhov length) and others (Zhou et al. 2019). A
diminished FI is frequently observed with higher wind speeds or friction velocities, partic-
ularly during unstable weather conditions (Franssen et al. 2010). Furthermore, an increase
in the averaging time also results in a decrease in the FI , as the averaging operator acts as a
high-pass filter. However, the averaging time is limited by the requirement of Taylor’s frozen
turbulence hypothesis for the stationarity, typically in 15, 30, or 60 min (Mauder et al. 2013).
Conversely, FI is often reported to increase with an increase in the measurement height
and the atmospheric instability (Twine et al. 2000; Wilson et al. 2002; Finnigan et al. 2003;
Franssen et al. 2010; Stoy et al. 2013; Zhou and Li 2019). It was also reported that there was
a phase difference between the vertical wind velocity and scalar states. With a greater phase
difference, there is a greater FI (Gao et al. 2016, 2017).

Extensive research efforts have been devoted to large eddy simulation (LES) to explore
the L–A interactions (Shen and Leclerc 1994; Gopalakrishnan and Avissar 2000; Albertson
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et al. 2001; Maronga and Raasch 2013; Patton et al. 2016) and the FI (Kanda et al. 2004;
Inagaki et al. 2006; Steinfeld et al. 2007; Huang et al. 2008; De Roo et al. 2018; Zhou
et al. 2019, 2023; Margairaz et al. 2020a, b; Wanner et al. 2022a). Several semi-empirical
FI prediction models have been proposed based on LES. For instance, Huang et al. (2008),
hereafter H08, proposed a FI prediction model as a function of stability parameters (u∗/w∗),
and the ratio of measurement height to the boundary layer height (z/ zi ) over a homogeneous
land surface. The H08 model is based on a simple shape function and can capture the FI
in their simulation within the range of 0.3 zi to 0.5 zi . An evaluation study by Eder et al.
(2014) based on observations in the Bavarian Alps and the Pre-Alps indicates that the H08
may not be able to accurately account for energy balance in complex terrain. Nevertheless,
further testing of its validity is still required. In our study, we conducted an evaluation of the
H08 based on the LES output, demonstrating the significance of measurement height in FI
estimates.

With the advancement in computational power, De Roo et al. (2018) build on the work
of H08 by using nesting techniques to increase the vertical resolution to 2 m (Hellsten
et al. 2021), and fitting the FI prediction model based on the data within the atmospheric
surface layer (ASL), which is roughly 0.1 zi (Stull 1988), hereafter De18. Additionally, De18
has been successfully applied to EC data from three sites, including a beech forest site in
Denmark and two pre-alpine grass sites in Germany, demonstrating a promising outcome for
reducing the FI and closing the surface energy balance (Mauder et al. 2021). Wanner et al.
(2022a, b) extended the model, hereafter W22, to account for land surface heterogeneity by
incorporating the thermal heterogeneity parameter (Margairaz et al. 2020b). TheW22 model
was fitted to the LES data, accounting for varying heterogeneity scales. This process resulted
in the creation of semi-empirical FI prediction equations, each with its own set of parameters
corresponding to the different heterogeneity scales.

Based on the cospectral analysis of the vertical wind velocity and potential temperature,
Zhou et al. (2019) proposed a conceptual model to explain the FI with a semi-empirical for-

mation of four variables, including the stability parameter (−zi /L, note that −zi/L = −κ
w3∗
u3∗

under unstable conditions, with κ being the von Kármán constant of 0.40), wind speed (U),
time average interval (T ) and integral length scale of vertical velocity (lw = ∫ ∞

0 R(r)dr , with

R(r) as a autocorrelation function), providing a potential approach to diagnose the FI . A fur-
ther study by Zhou et al. (2023) compared the performance of H08, De18, and Z19 using LES
data over a 1-D stripe heterogeneity pattern with prescribed sensible and latent heat fluxes.
Zhou et al. (2023) suggest that the FI prediction model exhibits inadequate performance at
the single-pixel scale. However, integrating the footprint model enhances its performance.
Among the three models (H08, De18, Z19), Z19 demonstrates superior performance com-
pared to H08 and De18 with their data. In addition, Z19 can be applied under all atmospheric
stability conditions, whereas the other two models are only valid under unstable conditions.

Recent studies have shown that the FI is positively related to atmospheric instabilities,
associated with the imbalance between the ejecting and sweeping contributions to the heat
flux. For instance, based on EC measurements from a dryland (Hanford Site, Washington,
USA), Gao et al. (2020) show that as atmospheric instability increases, the flux contribution
from sweeps (w′ < 0, θ ′ < 0) decreases, while the flux contribution from ejections (w′ >

0, θ ′ > 0) remains constant (Fig. 8 in their work). In a separate study, based on observations
from a 225 m meteorological tower in an urban environment (Tianjin, China), Zhang et al.
(2023b) reported that with the increase of atmospheric instability, the flux contribution from
ejections increases slightly, and the flux contribution of sweeps remains constant (Fig. 3 in
their study). Despite slight inconsistencies in each component, the trend remains the same: the
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difference in flux contribution between the sweeps and ejections increases as the instability
increases. This asymmetric transport phenomenon provides insight into the underestimation
of the turbulent heat fluxes (Li et al. 2018; Liu et al. 2021). Further analysis of the asymmetric
transport over the LES data can shed light on the mechanics of the FI within the ASL (Liu
et al. 2024).

There is increasing scientific interest in understanding the mechanics of FI and utilizing
this knowledge to improve EC measurements. However, few studies have focused on the
validity ofFI predictionmodels. For example,Zhouet al. (2023) compared threeFI prediction
models over a 1-D stripe heterogeneity surface with prescribed sensible and latent heat flux.
Further evaluation of available FI prediction models over more complex terrain (i.e., 2-D
heterogeneity) at different heterogeneity scales is needed to interrogate the robustness of these
models. In order to achieve this objective, this study conducted a series of LES coupled with
a land surface model (LES-LSM) over a checkerboard pattern of soil moisture heterogeneity.
The focus of this study is to evaluate four selected FI prediction models and to investigate
the role measurement height played in the FI through the quadrant analysis. The paper is
organised as follows: Section 2 presents the FI prediction models, along with the model and
simulation setup. Section 3 presents the results and a brief discussion. Section 4 presents the
summary and conclusion.

2 Methods

2.1 Flux Imbalance

2.1.1 Flux Imbalance Estimation

To illustrate FI , we take the vertical wind speed (w) and potential temperature (θ ), respec-
tively, as examples, presenting them in both temporal and spatial domains using the Reynolds
decomposition (Finnigan and Shaw 2008) as:

w(x, t) = w(x) + w′(x, t), (1a)

θ(x, t) = θ(x) + θ ′(x, t), (1b)

w(x, t) = 〈w〉(t) + δw(x, t), (2a)

θ(x, t) = 〈θ〉(t) + δθ(x, t). (2b)

The temporal mean is indicated by an overline, and the spatial horizontal mean is indicated
by the angle bracket. A prime symbol denotes the temporal fluctuation, and the symbol δ

represents the spatial fluctuation. The total vertical heat flux at a given height (De Roo and
Mauder 2018) is described as:

〈wθ〉 = 〈w〉〈θ〉 + 〈δwδθ〉 + 〈w′θ ′〉. (3)

On the right-hand side of Eq. 3, the terms correspond to the mean vertical advection
flux, the dispersive flux, and the eddy-covariance flux (i.e., turbulent heat flux), respectively.
An important observation is that the vertical wind w does not exhibit a zero value at the
point scale when a heterogeneous land surface experiences continuous heating under free
convection conditions (Prabha et al. 2007).
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Table 1 Different definitions of FI in the literature

Equations References

〈I 〉 =
〈
wθ

〉−
〈
w′θ ′〉

〈
wθ

〉
Kanda et al. (2004), Inagaki et al. (2006), Steinfeld et al. (2007),
Huang et al. (2008), Schalkwijk et al. (2016), Zhou et al. (2018)

〈I 〉 =
〈
Hsur f

〉−
〈
w′θ ′〉

〈
Hsur f

〉
De Roo et al. (2018), Zhou et al. (2019), Wanner et al. (2022a)

〈I 〉 =
〈
w′θ ′〉+〈

δwδθ
〉+〈w〉〈θ−θre f

〉
〈
w′θ ′〉

Morrison et al. (2022), (2023)

The dispersive flux has been consistently recognized as an important factor in achieving
the closure of the surface energy balance (Kanda et al. 2004; Mauder et al. 2020). Research
has shown that dispersive fluxes account for about 5–10% of the total sensible heat flux in
the lower atmosphere, and this contribution increases with height, potentially reaching over
40% at heights above 100 m over an arid landscape (Margairaz et al. 2020a).

The FI is often defined as the nonlocal scale flux (i.e., the difference between the total
reference heat flux and the turbulent heat flux) to the total reference heat flux (Kanda et al.
2004; Inagaki et al. 2006; Huang et al. 2008; De Roo et al. 2018; Zhou et al. 2019, 2023;
Wanner et al. 2022b, 2024). In the literature, different selections of total reference heat flux
have been proposed, including either the total heat fluxwithin the atmosphere (〈wθ〉, first row
in Table 1), or surface heat flux (〈Hsur f 〉, second row in Table 1, often employed in studies
with prescribed surface heat flux). In order to be consistent with the majority of previous
research, we have followed the methodology outlined in the first row of Table 1 for the data
processing. It can be reasonably assumed that the two definitions will have a negligible effect
on the results, given that the sensible heat flux within the ASL is nearly constant (Baldocchi
et al. 2001).

Furthermore, a novel definition of FI has been put forth by Morrison et al. (2022), which
is the ratio of the total reference heat flux in the atmosphere to the turbulent heat flux. In
the event of a perfect balance, the value is 1. Conversely, any underestimation yields a value
greater than 1. The definition is also listed as the third row in Table 1 for reference.

2.1.2 Flux Imbalance Prediction Models

As mentioned in the introduction, numerous research efforts have been dedicated to deter-
mining the FI with statistical models considering turbulence characteristics. To gain a better
understanding of the value and usefulness of these models, we selected four FI prediction
models for a comprehensive evaluation. The models are H08, De18, Z19 and W22, with
the semi-empirical formulas shown in Table 2. Notably, this study excluded the approach
suggested by Panin and Bernhofer (2008) for using the effective roughness length, because
a uniform roughness length of 0.1 m was applied across all simulations in our study.

In Table 2, u∗ = (u′w′2 + v′w′2)
1/4

is the friction velocity, w∗ =
[
gzi
θv

(w′θ ′)s
]1/3

is the

convective velocity scale, z is the measurement height, zi is the boundary layer height defined
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Table 2 FI prediction models in the literature

Notation FI Prediction Model Application
Range

References

H08 〈I 〉 =
[
exp

(
4.2 − 16 u∗

w∗

)
+ 2.1

][
1.1 − 8.0

(
z
Zi

− 0.38
)2]0.5 0.3 zi ~ 0.5 zi Huang et al.

(2008)

De18 〈I 〉 =
[
0197exp

(
−17.0 u∗

w∗

)
+ 0.156

]
[0.21 + 10.69 z

Zi
] < 0.1 zi De Roo et al.

(2018)

Z19 〈I 〉 = 1 − [−1.46 z
Zi

+ 1.0][−0.05 Zi
L

lw
UT + 0.95] 0.03 zi ~ 0.1 zi Zhou et al.

(2019)

W22 〈I 〉 =
[
aexp

(
b u∗

w∗

)
+ c

][
20.05 z

Zi
+ 0.157

]
[Hpar ] < 0.1 zi Wanner et al.

(2022a)

as the height where the sensible heat flux profile has its minimum, L = −u3∗θv

kgw′θ ′ is the Obukhov

length, U is the mean horizontal wind speed, lw = ∫ ∞
0 R(r)dr is the integral length scale of

vertical velocity, and R(r) is the autocorrelation function (Zhou et al. 2019), Hpar = glh
U2

�T
T

is the thermal heterogeneity parameter (Margairaz et al. 2020b). Details of the scaling param-
eters are described in the Appendix 1.

It is important to note that the parameters a, b, and c in W22 are scale-dependent and
were explicitly designed for heterogeneity scales of 200 m, 400 m, and 800 m in the original
study. Therefore, they are labelled as W22-200 m, W22-400 m, and W22-800 m. To align
closely with the heterogeneity scale in our simulation setting, we compared the simulations
with heterogeneity scales of 2400 m (s2400), 1200 m (s1200) and 600 m (s600) to W22-
800 m. However, this comparison may lead to uncertainties in the model’s performance. The
same approach applies to the remaining scenarios in which we compare the simulations with
heterogeneity scale of 300 m (s300) to W22-400 m and heterogeneity scale of 150 m (s150)
and 50 m (s50) to W22-200 m.

2.2 Data and Processing

2.2.1 Model Description

In this study, a dataset was generated using an LES model, ICON-LEM, coupled to a land
surfacemodel, TERRA-ML, at various scales of land surface heterogeneity.The ICON(Icosa-
hedral Nonhydrostatic) framework is a collaboration between the German Weather Service
(DWD), the Max Planck Institute for Meteorology (MPI-M), German Climate Computing
Centre (DKRZ), Karlsruhe Institute of Technology (KIT) and the Centre for Climate Systems
Modelling (C2SM). ICONwas originally developed for research and operational purposes in
numerical weather prediction and climate modelling (Zängl et al. 2015). The ICON frame-
work enables the implementation of a LES mode, known as ICON-LEM (Dipankar et al.
2015). ICON-LEM uses the 3D Smagorinsky turbulence scheme to account for the SGS
contribution. The performance of ICON-LEM has been extensively evaluated over a large
spatial domain in Germany, as reported in the study of Heinze et al. (2017). Furthermore,
ICON-LEMhas been used in various scientific investigations, including studies onmesoscale
secondary circulations (Han et al. 2019), high-CAPE (convective available potential energy)
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(Rybka et al. 2021), Atmospheric Boundary Layer (ABL) tuning parametrization (Poll et al.
2022), cloud properties and precipitation (Verma and Burkhardt 2022), and many others. For
a comprehensive explanation of the parameterisations of ICON-LEM, interested readers are
referred to Dipankar et al. (2015).

The ICON framework comprises the land surface model TERRA-ML that enables two-
way coupling between the land surface and the atmosphere (Grasselt et al. 2008; Schulz and
Vogel 2020). TERRA-ML estimates the sensible and latent heat flux at the land surface using
the following equations, and provides soil temperature and soil moisture as lower boundary
layer conditions:

H = ρCpCh |U |(θπs f c − Ts f c
)
, (4)

LE = ρLv

qv − qsav

ra + rs
, (5)

whereH (Wm−2) is the sensible heat flux at the land surface, ρ is the air density (kgm−3),Cp

and Ch are the heat capacity (J kg−1 K−1) and the bulk transfer coefficient (–), respectively,
θ is the air potential temperature (K), and Ts f c is the ground surface temperature (K), with π

as the scaled pressure at the ground surface (–). ra denotes the aerodynamic resistance, and

rs = rs,min(
θ1−θadp
θ f c−θadp

)
−1

is the soil resistance, with rs,min=50 m s−1, while θadp (K) and θ f c

(K) are the air dryness point and field capacity (Schulz and Vogel 2020).

2.2.2 Simulation Setup

In this study, the spatial resolution of the simulation was set to 50 m in both the x and y
directions, covering an area of 4.8 km× 4.8 kmwith a double periodic boundary setting. This
spatial configuration is considered suitable for capturing the mesoscale secondary circulation
while ensuring computational efficiency (Han et al. 2019; Zhang et al. 2023a). The vertical
grid consists of 420 levels with a resolution of 10 m, extending to a height of 4.2 km. A
sponge layer with Rayleigh damping of the vertical velocity component was incorporated
into the model at an altitude of 3700 m and above, with a depth of 500 m (the upper 8.3%), in
order to nudge the atmosphere at the upper atmospheric boundary layer. The initial height of
the boundary layer was set to 1000 m, with a constant potential temperature of 290 K below.
Above 1000 m, the potential temperature was set to increase at a lapse rate of 0.006 K m−1.
Each simulation was conducted for a duration of 8 h, with a temporal step of 0.5 s for both
ICON-LEM and TERRA-ML that coupled in every time step. A fixed incoming radiation
of 700 W m−2 at the top of the atmosphere and a flat terrain ensure the tractability of the
problem, as incorporating the diurnal variations in radiation (Zhou et al. 2018) or accounting
for complex terrain (Rihani et al. 2015) would introduce additional complexity into to the
system. It should be noted that the Coriolis effect and the background wind are not included
in the simulation.

The use of a two-dimensional checkerboard pattern has been widely used in various
studies, including the application of prescribed heat fluxes (Lee et al. 2019), temperature
(Margairaz et al. 2020b; Wanner et al. 2022a) and soil moisture (Huang and Margulis 2009).
In this work, a classical checkerboard pattern of soil moisture was used (Fig. 1), with the
same horizontal grid size as the atmosphere (i.e., 50m). Patch sizes (i.e. heterogeneity scales)
varied from 50 m to 2,400 m. Specifically, a simulation with a patch size of 2,400 m is named
s2400; similarly, s1200, s600, s300, s150 and s50 are named for simulations with patch sizes
of 1,200m, 600m, 300m, 150mand 50m, respectively. The soilmoisture content distribution
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Fig. 1 Initial distribution of soil moisture. a heterogeneity scale = 2400 m, b heterogeneity scale = 1200 m,
c heterogeneity scale= 600 m, d heterogeneity scale= 300 m, e heterogeneity scale= 150 m, f heterogeneity
scale = 50 m. The simulations are named s2400, s1200, s600, s300, s150 and s50, respectively. The dark
colour has a value of 0.25 cm3 cm−3, and the light colour has a value of 0.55 cm3 cm−3. The spatial average
is 0.40 cm3 cm−3. Additionally, an equivalent homogeneous simulation (Ho) was performed, see Appendix 2

included 0.55 cm3 cm−3 for the wet region and 0.25 cm3 cm−3 for the dry region, with a
domain-average value of 0.40 cm3 cm−3. In addition, an equivalent homogeneous simulation
was conducted with a relatively lower soil moisture value but comparable heat fluxes. This
is due to the fact that a simple soil moisture loss function is employed in the TERRA-ML
model, which assumes that the evapotranspiration (i.e., latent heat flux) remains constant
under low soil moisture conditions, increases at a constant rate within the transitional zone
and becomes constant again when the soil becomes sufficiently wet. This is illustrated in
Figs. 8 and 9 in the Appendix.

Although TERRA-ML comprises eight soil layers reaching amaximum depth of 15m, the
variation in the soil moisture profile was not considered due to the simulation’s limited time
of 8 h. Note, ICON uses unstructured grids instead of the traditional longitude-latitude grid
(i.e., structured orthogonal grids); a checkerboard distribution of soil moisture can still be
achieved through a remapping process (Wan et al. 2013). Themodel outputs the instantaneous
variables at a 15-min interval. In addition, a time step of 0.5 s is saved for thewind components
and potential temperatures of the lowest ten layers during the last hour.

2.2.3 Quadrant Analysis

The quadrant analysis method decomposes two turbulent fluctuations (e.g. w′ and θ ′) into
four quadrants, thereby determining the contribution and time fraction of turbulent heat flux
from each quadrant. This approach has also been employed to investigate the dissimilarity
between heat and momentum transport (Schmutz and Vogt 2019; Gao et al. 2020).

This study follows Li and Bou-Zeid’s (2011) definition of quadrant decomposition, which
includes the ejections (w′ > 0, θ ′ > 0), the sweeps (w′ < 0, θ ′ < 0), the inward interaction
(w′ > 0, θ ′ < 0), and the outward interaction (w′ > 0, θ ′ < 0). The average fluxes within
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each quadrant can be expressed in Eq. 6, as:

w′θ ′
k = 1

N

N∑
t=1

w′θ ′ Ik(t), (6)

where Ik(t) is an indicator variable with a weight of one if the sample is in the corresponding
quadrant; otherwise, it has a weight of zero. The flux contribution S(i) and time fraction T (i)
can then be calculated using the following equations (Schmutz and Vogt 2019),

S(i) = w′θ ′
k

w′θ ′ , (7)

T (i) =
∑N

n=1 Ik(t)

N
. (8)

3 Results and Discussions

3.1 Horizontal Cross-Section andVertical Profiles

Figure 2 displays a clear cellular structure for the vertical wind velocity, characterised by
narrow and intense updrafts and weak downdrafts. The air temperature over dry soil is higher
than over wet soil with uniform incoming radiation. The air parcels over dry soil move
upward due to buoyancy, which reduces and increases air pressure at the land surface and
top of the ABL. Conversely, the air parcels over wet soil sinks, increasing air pressure at
the land surface, leading to secondary circulations due to the horizontal pressure gradients.

Fig. 2 Cross section of temporal-averaged vertical wind at 50 m (half level), turbulent heat flux, w′θ ′ at 45 m
(full level) and surface sensible heat flux, SHsurf, at the land surface for the last hour of the simulation. At a
large heterogeneity scale (on the left side), the atmospheric structure is dominated by the thermally-induced
mesoscale circulation (TMC). At a small heterogeneity scale (on the right side), the atmospheric structure
is dominated by the turbulent organised structure (TOS). The black dashed line represents the homogeneous
equivalent line
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This phenomenon is commonly known as thermally-induced mesoscale circulation (TMC)
and has been extensively documented in the literature (Wanner et al. 2022a, b). A systematic
discussion can be found in Salesky et al. (2017). Simulations s2400 and s1200 show a
prevalence of updrafts in the dry region. However, as the scale of heterogeneity decreases to
600 m and 300 m (i.e., s600 and s300), the connection between the updraft pattern and the
dry region pattern becomes less pronounced, as also shown in Fig. 11 in Appendix 3, that a
point-to-point Pearson correlation coefficient between the turbulent heat flux at 45 m and the
land surface heat flux decreased from 0.76 for s2400 to 0.27 for s300. Simulations s150 and
s50 show a quasi-homogeneous random structure, similar to the homogeneous simulation,
which has been previously reported as a slow-moving turbulent organised structure (TOS) in
Kanda et al. (2004). According to the classification by Bou-Zeid et al. (2020), land patches of
s150 and s50 could be considered statistically homogeneous if they exhibit locally variable
surface characteristics at a small scale, yet remain relatively uniform at the regional scale.
The turbulent energy spectrum in Fig. 10 of Appendix 3 also indicates that the difference
between s150, s50 and the equivalent homogeneous case is negligible.

In Fig. 3, the potential temperature above the ASL remains constant until the boundary
layer height is reached, as indicated by an almost vertical line. The potential temperature for
simulations with larger heterogeneity scales (e.g. s2400, s1200) are slightly higher than those
with smaller heterogeneity scales (e.g. s150, s50), which is consistent with the findings of
previous studies (Raasch and Harbusch 2001; Huang and Margulis 2009; Zhou et al. 2019;

Fig. 3 Vertical profile of the horizontal mean potential temperature at 4 h, 6 h and 8 h
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Fig. 4 Profile of the resolved and subgrid scale potential temperature flux (i.e. turbulent heat flux) for the last
hour of the simulation. Panels a and d show the resolved and subgrid scale potential temperature flux within
the convective boundary layer. Panels b and c are magnifications of a showing details in the entrainment layer
and ASL. The same applies to panels e and f to d

Han et al. 2019). Enhanced entrainment effects in simulationswith larger heterogeneity scales
may explain this behaviour, as shown in Fig. 4.

In Fig. 4, the vertical profile of the potential temperature flux is depicted, showing a
typical shape in accordance with Tennekes (1973), where the resolved potential temperature
flux decreases as height increases, reaching its maximum negative value at the entrainment
layer. For simulation s2400, the maximum negative value observed was −23 Wm−2, which
decreased to −17 Wm−2 for simulation s1200, and further decreased to −13 Wm−2 for the
remaining cases up to a heterogeneity scale of 50 m. The significant influence of the subgrid-
scale (SGS) contribution on the potential temperature flux near the surface layer is evident
in Fig. 4f, which gradually decreases with increasing height. The lowest levels of the LES
output are often excluded from the analysis because the flux is usually purely parameterized
(De Roo andMauder 2018; Zhou et al. 2019). However, surface-level data has been included
in this study to provide readers with a complete perspective on the role of SGS in atmospheric
heat flux characteristics.

3.2 Impact of Heterogeneity scale on the Atmospheric Structure

Table 3 shows the bulk statistics of the different simulations. Simulations with larger hetero-
geneity scales (s2400 and s1200) show a slightly higher boundary layer height (zi , defined
as the height where the sensible heat flux has its minimum), reaching 1695 m compared
to the simulations with smaller heterogeneity scales (e.g., 1635 m for s300). A comparable
trend is documented in the study by Zhou et al. (2019), which reports a decline in the mean
boundary layer height from 1417 m to 1287 m for a decrease in heterogeneity scale from
2000 m to 240 m. However, zi of s150 is slightly higher than s300 in our study, leading
to a non-monotonic trend of the heterogeneity scale on the boundary layer height at small
heterogeneity scales. One possible explanation is that the TMC dominates the atmosphere
at sufficiently large heterogeneity scales. In contrast, at smaller heterogeneity scales, the
formation of the TMC appears to be less pronounced, and the TOS dominates the mesoscale
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Table 3 Bulk statistics of various simulations

Case Heterogeneity
Scale (m)

zi (m) u∗
(m s−1)

w∗
(m s−1)

t∗
(s)

Bowen
ratio
(-)

−zi/L(-) Hpar (-)

s2400 2400 1695 0.297 1.60 1056 0.747 74.6 135.3

s1200 1200 1695 0.323 1.60 1057 0.739 57.1 55.2

s600 600 1665 0.326 1.58 1050 0.730 54.8 30.3

s300 300 1635 0.348 1.57 1040 0.726 44.5 13.4

s150 150 1675 0.342 1.58 1061 0.722 47.6 6.7

s50 50 1635 0.345 1.56 1045 0.720 45.4 2.1

Ho – 1635 0.344 1.57 1041 0.722 46.8 –

circulation pattern. Han et al. (2019) reported a non-monotonic trend in boundary layer height
with a much larger heterogeneity scale ranging from 600 m to 76.8 km, which is attributed to
surface heating but originates from secondary circulations. It is also noted that other factors,
including the lapse rate (Peng et al. 2023) and geostrophic wind (Margairaz et al. 2020b),
may affect the boundary layer height.

The values of u∗ and w∗ are calculated at a height of 45 m. The results indicate that
as the heterogeneity scale decreases, u∗ increases while w∗ decreases, resulting in a slight
decrease of the atmospheric stability (− zi /L). The Bowen ratio decreased with a decreasing
heterogeneity scale, shifting from 0.747 to 0.720. Additionally, the difference in large-eddy
turnover time scale (t∗ = zi/w∗) among the simulations with different heterogeneity scales
is negligible, with a value range between 1040 and 1061 s, roughly 17 min.

3.3 Flux Imbalance PredictionModel Evaluation

This section analyses the vertical sensible heat flux components, which comprise the turbulent
heat flux, the mean vertical advection flux, and the dispersive flux at various measurement
heights. Based on these components, we assess four FI prediction models selected from the
literature, as listed in Table 2.

Figure 5 shows the different components of the vertical heat flux and the FI within the
ASL.The turbulent heat flux (including theSGScontribution) decreaseswith height,while the
dispersiveflux increaseswith height. The results agreewithMargairaz et al.’s (2020a) findings
that the contribution of the dispersive component to the total heat flux increases from 10 to
40% as the height increases from near surface to above 100 m. The mean vertical advection
flux calculation in this study includes a reference potential temperature, as suggested by
Morrison et al. (2022). The mean vertical advection fluxes exhibit fluctuations in the lower
levels, up to 45m, before increasing with height. However, the mean vertical advection fluxes
are several magnitudes smaller than the turbulent heat fluxes and the dispersive heat fluxes.
This suggests that the mean vertical advection fluxes may be ignored in modelling efforts.
For example, Wanner et al. (2024) also show that properly modelling the dispersive flux is
the key to closing the energy balance.

The FI shows non-monotonicity across the heterogeneity scale that increases from s150
to s1200, reaching a maximum, then decreasing again at s2400. A similar result has been
reported by Zhou et al. (2019), who found that when the surface heterogeneity scale becomes
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Fig. 5 Flux components and FI for the last hour of simulation. The first row shows the turbulent heat flux
including the SGS contribution, the dispersive flux and the mean vertical advection flux, respectively. The
second row shows the sum of the vertical advective and dispersive heat flux, the total reference heat flux and
FI . Noted that the FI is dimensionless. A reference temperature is included to calculate the mean vertical
advection flux based on Morrison et al. (2022), which is set as the mean value of the previous hour

larger than the boundary layer height, the FI starts to decrease. This may be due to the
flows behaving like a homogeneous surface at scales below the heterogeneity scale, which
minimizes the impact of the dispersive fluxes. Additionally, FI is more pronounced in the
s50 case compared to the s150 case. This difference is likely because, in the s50 case, each
patch corresponds to a single grid cell. Further investigation using varying grid sizes while
maintaining the same patch size may help clarify the underlying causes, offering a promising
direction for future research.

Figure 6 shows the performance of the four FI prediction models considered. The perfor-
mance of H08 is relatively worse compared to the other models. This is because H08 is fitted
with data obtained between 0.3 zi to 0.5 zi , which extends beyond the atmospheric surface
layer (ASL) and limits its direct applicability to the ASL FI estimates. Similar conclusions
have been drawn in Eder et al. (2014). Furthermore, if z/ zi is less than 0.01, (i.e., z = 17 m
with zi = 1700 m), the value within the square root in H08 formula becomes negative, result-
ing in a singularity. Therefore, the data below 15 m is excluded in Fig. 6a. Nevertheless, in
our opinion, the concept of H08 is useful for quantifying FI based on atmospheric stability
and relative measurement height in the mixing layer.

De18 produces results comparable to those obtained from the LES, even though it was
originally developed from simulations over a homogeneous land surface. The results show a
slight overestimation of FI near the surface and an underestimation with increasing height.
Z19, compared to De18, shows a similar performance in predicting the FI . In the first layer
near the land surface (i.e. z= 5m), Z19 provides a negative imbalance, which is also reported
by Zhou et al. (2019) (Fig. C2 in their paper). This can be explained by the fact that Z19 was
constructed with a data range of 0.03 zi to 0.1 zi , which is larger than 5 m.

W22 performs best when the heterogeneity scale is well matched, such as s300 and
s150. However, W22 tends to significantly overestimate the FI for simulations with a larger
heterogeneity scale, resulting in unreasonable values (not shown in the figure). Consequently,
directly applying W22 to the climate model presents a challenge, particularly for grid sizes
at several kilometre scales.
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Fig. 6 Performance of the FI prediction models for the bottom ten layers. a H08, b De18, c Z19 d W22. The
x-axis represents theFI calculated fromLES data, and the y-axis displays theFI estimated by theFI prediction
models. Note that FI increases consistently with height

3.4 Quadrant Analysis

The turbulent flux ismainly attributed to the contributions from the ejections (w′ > 0, θ ′ > 0)
and sweeps (w′ < 0, θ ′ < 0) (Högström and Bergström 1996). Several studies indicate that
the difference between the contributions from ejections and sweeps increases with atmo-
spheric instability, leading to an increase in the FI (Gao et al. 2020; Liu et al. 2021). To
investigate the potential correlation between FI and height, a quadrant analysis was con-
ducted at different measurement heights.

As the height in the ASL increases from 5 to 95 m, the time fraction of ejection (Fig. 7a)
decreases from a mean of 0.37 to 0.30. Meanwhile, the flux contribution of ejection (Fig. 7d)
increases from a mean of 0.58 to 0.70, along with a higher standard deviation. This suggests
that the ejections originate from the land surface and increase in intensity while becoming
narrower with increasing height. In contrast, the time fraction of sweeps (Fig. 7b) fluctuates
with increasing height, starting at 0.44 at 5 m, peaking at 0.50 at 35 m, and then decreasing
to 0.43 at 95 m. The flux contribution of sweeps (Fig. 7e) decreases with increasing height,
indicating that the sweeps originate from the atmosphere and head towards the land surface.
These findings are consistent with the work of Li and Bou-Zeid (2011) and Gao et al. (2020).

123



Flux Imbalance Models for Heterogeneous Surfaces Page 15 of 23 43

Fig. 7 Time fraction and flux contribution of ejections and sweeps for case s1200. Similar patterns are observed
in other cases (not shown)

Another observation from Fig. 7f is that the contribution difference between ejections and
sweeps (�S) increases with height, correlating with the decrease in turbulent heat flux in
Fig. 5. Liu et al. (2021) also reported comparable results based on the measurement from the
EC tower, that the increased �S links to the reduced turbulent heat flux, which explains the
increased FI with height.

3.5 Discussion

The De18, Z19, and W22 show promising results for predicting FI . However, the barriers to
directly applying FI prediction models in correcting EC measurements must be discussed.
When revisiting theFI predictionmodels, it becomes clear that the boundary layer height (zi )
is a critical parameter. However, zi is not always available frommeasurements (Mauder et al.
2021). The thermodynamic and aerodynamic properties of the atmosphere can be obtained
through various methods, such as Ceilometer, Radiosonde, Doppler Sodar, and profiling
radar, as discussed in Seibert et al. (2000). Moreover, these measurements are relatively
expensive to install and maintain. Currently, only 28 stations are reported to have co-located
atmospheric boundary layer measurements in the FLUXNET sites (Helbig et al. 2021). In
addition, data from these stations may not be continued, and their distribution is generally
concentrated in North America and Europe.

The FI prediction models under consideration primarily target convective (i.e., unstable)
boundary layer conditions. However, it is important to correct EC data during neutral and
stable conditions to achieve energybalance closure over extended timeperiods.The relativeFI
remains significant during nocturnal periods, even if absolute values may be small (Franssen
et al. 2010). Here, the atmospheric stability parameters used in H08, De18, and W22 are
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inadequate because of the absence of a well-defined w∗ under stable conditions (Zhou et al.
2019).

4 Summary and Conclusion

The accurate estimation of turbulent heat flux is a persistent challenge in Earth science.
Numerous researches suggest that large-scale eddies significantly contribute to the flux imbal-
ance (FI). The objective of this study is to investigate FI arising from mesoscale transport
in convective boundary layer conditions, with a particular emphasis on assessing the perfor-
mance of selected FI prediction models from the literature.

The dataset was generated using a large eddy simulation (ICON-LEM) coupled with a
land surface model (TERRA-ML). A checkerboard pattern of wet-dry soil moisture was used
to represent the two-dimensional heterogeneity of the land surface across a range of scales
from 50 m to 2.4 km. The model was set up with a spatial coverage of 4.8 × 4.8 km2 and
a grid resolution of 50 m. It assumed flat terrain and employed a double periodic boundary
setting. Simulations were conducted over an 8-h period with a time step of 0.5 s. The model
was initialised with a constant incoming radiation of 700Wm−2 at the top of the atmosphere.

Two distinct sub-mesoscale circulations were identified: thermally inducedmesoscale cir-
culation (TMC) and turbulent organised structure (TOS). TMC primarily affects atmospheric
dynamics on larger heterogeneity scales, reflecting a clear updraft pattern that mirrors the
configuration of the arid land surface. As the heterogeneity scale decreases, the relationship
between updraft position and soil moisture pattern weakens, and TOS becomes the dominant
structure in atmospheric dynamics. Additionally, the domain-averaged FI shows a non-linear
correlationwith the heterogeneity scales, which could be attributed to the presence of two dis-
tinct sub-mesoscale circulations. This finding is consistent with previous research suggesting
an optimal heterogeneity scale for the formation of secondary circulations.

Four selected FI prediction models were evaluated, including H08 (Huang et al. 2008),
De18 (De Roo et al. 2018), Z19 (Zhou et al. 2019) and W22 (Wanner et al. 2022a). H08
showed a tendency to underestimate the FI , which can be attributed to its initial valid vertical
height range of 0.3 zi to 0.5 zi , while the data used in our analysis are within the above surface
layer (ASL), approximately within 0.1 zi . De18 and Z19 show a similar performance that can
roughly capture the FI , with a slight underestimation as the measurement height increases.
W22 agrees well with our LES data when the heterogeneity scale matches its simulation
setting. The performance of the FI prediction model provides a potential in correcting EC
measurements.

A further observation derived from quadrant analysis is the notable discrepancy between
the flux contributions from ejections and sweeps along the height. This difference correlates
with a decrease in the turbulent heat flux and an increase in the FI . These findings emphasise
the importance of considering the EC measurement height and the atmospheric model’s
vertical grid size when studying the vertical variations of turbulent fluxes.

Appendix 1: Scaling Parameters

The scaling parameters used in this work are listed in Table 4.
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Table 4 Scaling Parameters

Scaling parameters Symbols Equations

Obukhov length L
L = −u3∗θv

kgw′θ ′

von Kármán constant k 0.40

Friction velocity u∗
u∗ =

∣∣∣ τ
ρ

∣∣∣
1
2 = (u′w′2 + v′w′2)

1/4

Convective velocity scale w∗
w∗ =

[
gzi
θv

(w′θ ′)s
]1/3

Characteristic temperature scale θ∗ θ∗ = w′θ ′s
u∗

Large-eddy turnover time scale t∗ t∗ = zi /w∗
Thermal heterogeneity parameter Hpar Hpar = glh

U2
�T
T

, lh is the heterogeneity scale

Integral length scale of vertical velocity lw
lw =

∞∫
0
R(r)dr

Appendix 2: Equivalent Homogeneous Simulation

An equivalent homogeneous simulation was performed in this study but with a different
domain-averaged soil moisture value. A sensitivity analysis of soil moisture to the domain-
averaged sensible heat flux, as shown in Fig. 8, indicates that a value of 0.325 cm3 cm−3 is
comparable to the heterogeneous case. This is because the land surface model used in this

Fig. 8 Time-series of sensible heat flux at the land surface for different simulations. Simulation with homoge-
neous soil moisture (HO_SM) of 0.325 cm3 cm−3 is suitable to represent a comparable homogeneous case
in this study
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Fig. 9 Sketch of the evapotranspiration calculated in TERRA-ML

study (TERRA-ML) utilized a simple soil moisture loss function to calculate evapotranspi-
ration (i.e., latent heat flux), as shown in Fig. 9. In this model, evapotranspiration remains
constant when soil moisture is low, increases at a constant rate within the transitional zone,
and becomes constant again when the soil is sufficiently wet.

Appendix 3: Statistical Homogeneous Simulation

Figure 10 indicates that the differences in the kinetic energy spectrum between different
simulations are largest at the lowest wavenumber. Specifically, simulations s2400 and s1200
show significant differences compared to other cases. In the case of s600, these differences
begin to decrease. For the s300 simulation, differences are still observable, particularly at
wavenumbers 2 and 3. However, for simulations s150 and s50, the differences from the
homogeneous case are negligible, indicating that a statistically homogeneous state is reached.

Furthermore, a point-to-point Pearson correlation coefficient is calculated between the
land surface heat flux and the turbulent heat flux in the atmosphere at 45 m for the average
of the last hour simulation. This is illustrated in Fig. 11. The Pearson correlation coefficient
demonstrates a decline with a reduction in heterogeneity scale, exhibiting values of 0.74 for
s2400, 0.62 for s1200, and 0.47 for s600. The coefficient for simulation s300 is 0.27, which
is higher than those for simulations s150 and s50, where values are less than 0.1 and are
similar to those observed in the homogeneous case.
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Fig. 10 Turbulent kinetic energy spectrum for the last hour simulation at a height of 45 m. The subfigure
provides a zoomed-in view at the smallest wavenumber

Fig. 11 Point-to-point Pearson correlation coefficient between the land surface heat flux and the turbulent heat
flux in the atmosphere at 45 m, averaged over the last hour of simulation
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