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Governing equations are foundations for modelling, predicting, and understanding the Earth system.
The Earth system is undergoing rapid change, and the conventional approaches for establishing
governing equations, such as empirical generalisations, are becoming increasingly challenging to deal
with the complexity and diversity of the geoscience processes we study today. In this Perspective, we
explore data-driven equation discovery, a novel scientific artificial intelligence pathway, for advancing
geosciences. Data-driven equation discovery identifies hidden patterns from data and transforms
them into interpretable equation representations, automating and accelerating equation discovery
processes. It provides a practical approach for geoscientists to model and understand complex
geoscience processes based on big Earth data. The final vision is to uncover new clear, describable,
and quantifiable equations in various geoscience disciplines. We summarize opportunities and
highlight that challenges in this field should be addressed by interdisciplinary collaborations.

Modelling and understanding geoscience processes is crucial to predicting
natural phenomena andmitigating the impacts of environmental challenges
under global change. Earth system processes are typically represented by
governing equations in the form of symbolic models, which describe how
the values of unknown variables change in response to variations in one or
more known variables1. Governing equations inherently entail concepts of
time, space, causality, and generality, defining the evolution of geophysical,
-chemical, -biological, -mechanical and ecological processes2 with inter-
pretability and accessibility. Historically, the paradigm for establishing
governing equations in geosciences has been rooted in constructive and
principled theories (Box 1). The former approach derives equations for
phenomenabasedonfirst principles, suchas conservation laws, symmetries,
physical regulations, and phenomenological behaviours3. The latter
approaches are empirical or semi-empirical generalisations summarised
and parameterised to capture the main features. For centuries, the classical
paradigm has resulted in ubiquitous canonical governing equations in
geosciences across various scales and processes, which are illustrated in
Fig. 1a. These equations are fundamental to Earth and climate sciences4.

Despite the historical success, the natural processes we study today are
often more complex and multifaceted rather than simple and single pro-
cesses, such asmodelling coupled dynamic components of the Earth system
(e.g., atmosphere, ocean, biosphere, cryosphere, carbon-water-nutrient
cycling, ecological dynamics). Limited knowledge makes it hard to define

accurate variables, and simplifying assumptions can lead to errors and
oversimplifications that don’t reflect real-world complexity5. This is true
even for basic equations, such as empirical equations for the physical
properties of gases that are not entirely ideal6, let alone in subsystems
dominated by nonlinearity, stochasticity, multiscale couplings, none-
quilibrium behaviour, and spontaneous behaviour6. In addition, scientific
discoveries that adhere to the classical paradigm rely on the creative and
intellectual insight of scientists and require continuous trial-and-error
approaches for incremental improvement7. Nevertheless, scientists are also
limited in processing and analysing hidden patterns that are not immedi-
ately apparent in complex datasets. Consequently, progress in establishing
and refining the governing equations in these systemshasbeen slowover the
past several decades.

With advances in sensor and data storage technologies, diversified
data within the Earth system have become more accessible, which offers
an alternative chance to understand the Earth system8,9. These data are
primarily used to develop data-driven predictive models10,11, often
making accurate predictions by identifying complex patterns in large
datasets. Nevertheless, they sometimes tend to be associated with
increased model and computational complexity and reduced
transparency12. The fundamental goal of geosciences is to derive a
concise, interpretable, and meaningful understanding of complex nat-
ural phenomena.
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In this Perspective, we introduce and discuss the data-driven equation
discovery and argue that it can integrate the power of data-driven methods
and the strengths of governing equations. Figure 2 provides a comparison of
these methods. Data-driven equation discovery is defined as automatically
distilling the hidden patterns from data and transforming them into an

interpretable and concise symbolic representation. As a result, it combines
the ability of data-driven models to extract laws that conform to predictive
patterns with the simplicity and transparency of equations. Data-driven
equation discovery is relevant to practical geoscience applications and
potentially essential for pioneering geoscientific discoveries. Specifically, it

Box 1 | Conventional and data-driven equation discovery

Conventional equation discovery
The classical paradigm for establishing governing equations in
geoscience includes first-principle approaches and (semi-)empirical
approaches. They are not used in isolation but are often mixed for
equation discovery.
First-principle approaches
First-principle approaches can be philosophically summarised as a cycle
that begins with observations and intuition, leading to the formulation of
hypotheses. These hypotheses are then subject to validation by experi-
ments, resulting in their either acceptance or rejection. This process
requires the iterative refinement of equations and, if necessary, the for-
mulation of new hypotheses. The key step here is proposing hypotheses
based on intuition, which involves specifically (1) precisely defining the
system and identifying relevant variables, (2) introducing relevant
assumptions and simplifications tailored to the specific problem, and (3)
choosing the fundamental laws applicable to the system (e.g., thermo-
dynamic, or hydrodynamic principles) as a basis for mathematical
deductions. Deriving equations from these principles requires strict
adherence to rigorous mathematical methodologies.
Empirical approaches
Empirical approaches involve identifying patterns within data through
observation and experimentation. Typically, scientists begin by con-
structingmathematical equations that include several parameters based
on the nature of the observed relationship (such as linear or non-linear).
Estimating theseparameters usually involves a statistical data analysis to
find theparameters that best fit theobservedpatternsor trends.Once the
governing equation is defined, validation is likewise required by applying
the equation to a data set different from that used to estimate the

parameters or by comparing the model’s predictions to known out-
comes. The process generally involves iteration and refinement, as well
as experimenting with different equation forms to find one that ade-
quately fits the new data set and maintains relevance.
Semi-em`pirical approaches
Semi-empirical approaches also referred to as phenomenological
approaches, rely on theoretical assumptions about the characteristics of
the system rather than being entirely empirical. It combines principles
with empirical data to createmodels that are both scientifically grounded
and practically applicable. A typical example of a semi-empirical
approach is thePenman-Monteithmodel for evapotranspiration,which is
partially based on the physical principles of conservation energy and
transport processes.Of note, however, is themodel’sempirical treatment
of the entire canopy as a single leaf, with stomatal conductance aggre-
gating to a collective value representing the effective canopy
conductance.
Data-driven discovery of governing equations
The data-driven discovery of governing equations is the simultaneous
identification of the explicit equation structure and the corresponding
coefficients from given observations. Given a data set xi; yi

� �n
i¼1, where

xi 2 Rd is the input vector, and yi 2 R is a scalar output, the explicit form
of symbolic expression y ¼ F xð Þ is the expected result to be discovered.
Here, F denotes a function class consisting of mappings, such as
x; x2; sin xð Þ, and ∂x

∂t. The discovery process can be implemented by dif-
ferent algorithms, as elaborated in the main text. Like the conventional
paradigm, this approach requires careful validation and possible iteration
based on performance metrics guided by performance metrics.
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represents an opportunity tomove beyond conventional (semi-)empirically
parameterised equations (e.g., numerous empirical equations in evapo-
transpirationmodelling13 and autotrophic respirationmodelling14), thereby
improving the modelling accuracy with transparency. It may also resolve
controversies in the forms of various conventional governing equations,
such as the ongoing debate over the structure of the advection-diffusion
equation15. Moreover, the discovery and formulation of equations are
naturally driven by data, which occurs spontaneously. This process not only
overcomes the difficulties associated with calibrating and estimating equa-
tion parameters but also accelerates scientific discovery by improving the
efficiency and effectiveness of exploration processes.

We first provide overviews of the conventional and data-driven
equation discovery and discuss how the emergence of the new data-driven
discovery could bring significant advantages to geoscience. We then
underscore the potential challenges and envision advancing geosciences
through data-driven discovery.We aim to foster a deep integration of data-
driven discovery into the practice of geoscientists, contributing to more
accurate, efficient, and comprehensive modelling, understanding, and
management of the complex Earth system.

Conventional governing equations in geosciences
Conventionally, in geoscience, the philosophy of deriving governing
equations (i.e., mathematical modelling) is based on first principles or
(semi-)empirical approaches3 (see Box 1). Scientists first postulate and
conceptualise a formulation based on observations or (theoretical) experi-
ments. This formulation is then subject to validation, refinement, and
updating, driven by logical reasoning and scientific or engineering research
insights. Many classical governing equations are initially derived by
empirical summarization, with subsequent scientific progress revealing
their derivability fromfirst principles. Figure 1bprovides example equations
in different disciplines within geosciences.

However, establishing suchequations requires adeepunderstandingof
complex processes by experienced scientists. In cases where a system is not
thoroughly understood, the equation-building process can be susceptible to
human cognitive biases, particularly in determining which simplifications
and assumptions are reasonable or in selecting the most appropriate phy-
sical principles. For instance, the formation anddissipationof clouds remain
poorly understood, resulting in physics-based cloud parameterization
equations that are based on incomplete knowledge and are prone to

Fig. 1 | Examples of governing equations in geosciences. aGeoscience processes in
the Earth system are described by different governing equations derived from the
conventional equation discovery paradigm. bRepresentative governing equations in

four typical geoscience domains: hydrology, ecology, seismology, and atmospheric
science. These equations are of various forms, including algebraic, ordinary, and
partial differential equations.
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inaccuracies16, thereby weakening our ability to predict climate dynamics.
Geoscientists often simplify fine-scale phenomena through parameterisa-
tion, suchasfirst-orderdegradationof empirically definedcarbonpools17. In
some cases, they may also rely on empirical formulas, guided by their
intuition, to capture the salient features of these processes.A typical example
is evapotranspiration modelling, where empirical equations describe many
physical transformations. For instance, stomatal conductance, a key inter-
mediate variable, is commonly expressed as a product of several environ-
mental factors18 or through a linear relationship with the rate of
photosynthesis19. Similarly, aerodynamic and thermal dynamics roughness
lengths are estimated using various semi-empirical models20–22. These
approaches often result in crucial yet intangible parameters that are difficult
to determine in practice. Furthermore, human factors can introduce errors
into the derived equations or make the equation form questionable. For
instance, the derivation of equations that describe unsaturated soilmoisture
movementbasedon theDarcy-Buckingham lawhas longbeen controversial
in hydrology23. Furthermore, determining the appropriate formof reaction-
diffusion equations is a continuing debate primarily influenced by scale
effects15, which consistently limits our understanding and modelling of
complex subsurface flow. Additionally, the conventional paradigm of
equationdiscovery,which ismainly scientist-drivenand reliant on intuition,
often necessitates an iterative process of trial and error that may lead to a
slow pace of scientific progress. In summary, despite its historical achieve-
ments, this paradigmmaynot effectively capture the ever-growing demands
for deeper scientific understanding of the increasingly complex Earth sys-
tem processes we study today.

Towards new data-driven equation discovery
Recently, thebigEarthdata9 has beenaccessible,which is characterizedby its
considerable volume, diverse sources, and rapid generation (e.g., CMIP-6
data24). In addition, with the increasing abundance of computational
resources, scientific artificial intelligence approaches have emerged25. There
is a growing effort on the automatic discovery of governing equations
directly from data26,27. To the best of our knowledge, the earliest study of
data-driven equation discovery can be attributed to Gerwin28, Langley29,
Falkenhainer and Michalski30, who proposed heuristic methods to derive
the mathematical functions from a large and complex space of possible
formulations using informed search. Data-driven equation discovery was
starting to become feasible. Subsequently, Koza demonstrated that genetic
programming (GP) could discover symbolic governing equations from
data31. During this time, GP was successfully applied in geoscience. For
instance, Babovic and Keijzer32 discovered the equation describing the
additional resistance to flow induced by flexible vegetation from data.

The modern paradigm of data-driven discovery is traced to seminal
workbyBongard andLipson33 andSchmidt andLipson34 through improved
GP, who successfully automated the discovery of equations for dynamical
systems and conservation laws from data. However, GP typically has
inherent limitations, such as computational intensity, susceptibility to
overfitting, and difficulties with convergence if not properly balanced35,36.
These limitations become prohibitive for high-dimensional systems

described by PDEs. However, PDEs play a critical role in simulating
dynamic systems and phenomena with spatial and temporal variations,
including applications in geosciences such as climatemodelling and natural
disaster prediction5. A few years later, Brunton et al.35 introduced a new
data-drivendiscovery framework known as sparse regression to address this
challenge and reignite enthusiasm in the field28,36. It led to numerous sub-
sequent works to extend to discover chaotic and complex PDEs from data,
such as PDEs with parameter dependencies37,38, which significantly expand
the potential applications within geoscience. In addition, the rapid devel-
opment of deep learning technologies has begun to address a long-standing
high sensitivity to noise and data-hungry39–41. In addition, the studies on the
identification of coordinates for governing equations, state variables, and
implicit representations (i.e., learning an operator that encapsulates the
system characteristics)42,43, may provide another avenue for data-driven
equation discovery.

Nowadays, this emerging data-driven discovery paradigm has under-
pinnedwide-ranging applications, includingbiology6,44,materials45, and also
geosciences, such as subsurface hydrology46, ocean modeling47–49 and cli-
mate science16,50,51. Despite its enormous potential and widespread
attention42, its opportunities remain underappreciated in the geoscience
community, primarily because of the disconnect between the advances and
the challenges and needs of geosciences. Therefore, we introduce the data-
driven equation discovery in detail and discuss leveraging it to benefit
geosciences in the following sections.

How to realise data-driven equation discovery in geosciences
The overview of the data-driven equation discovery workflow in practice is
shown inFig. 3, andan example is given inBox2.An important part of data-
driven equation discovery is to select proper approaches, whose objective is
to employ reasonable strategies to reduce search space effectively, as brute
force search is considered non-deterministic polynomial-hard (NP-hard)52,
which means that solving it quickly becomes impractical as the size of the
problem grows. The equation discovery from data differs from traditional
inverse modelling and black-box system identification. The latter aims to
estimate the parameters or coefficients from data53, where the equation
structure is usually partly given.

Figure 4 provides an overview of methods for realising data-driven
equation discovery in geosciences. A detailed description of approaches is
given in Supplementary Note 1. We divide data-driven equation discovery
approaches into two primary categories: symbolic regression and sparse
selection algorithms, based on whether the algorithms can generate an
infinite variety of equation forms. Symbolic regression utilises various
search methods to generate infinite combinations of symbolic formulae,
mainly including genetic programming33,34, heuristic symbolic
regression28,54, mixed-integer nonlinear programming approaches55,56, deep
reinforcement learning39,57, and large-scale pre-trained Transformers58,59.
They only require data on the variables of interest, including preprocessed
data (e.g., derivatives). The ability of symbolic regressionmakes itwell suited
to uncovering complex governing equations that describe the underlying
symbolic relationships between multiple variables in geoscience. For

Fig. 2 | Comparison of different approaches for modelling and understanding
geoscience processes. Based on phenomena and observed data, scientists sum-
marised and proposed governing equations, the equations are accurate, reliable,
transparent to a certain extent and also simple. The pure data-driven models based

on artificial intelligence perform higher accuracy while lacking reliability and
transparency and are too complex. The new data-driven equation discovery can
integrate their merits.
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instance, it can be employed to explore intricate governing equation rela-
tionships between evapotranspiration flux and various meteorological
parameters and vegetation variables using large amounts of data, where the
exact physical mechanism is still unclear. In contrast, sparse selection
algorithms, including sparse regression35,36,60 and equation learner networks
(EQL)61,62 aim to select the most appropriate equation from a predefined
pool of symbolic combinations. They are efficient for systems with a solid
understanding of the underlying functional form. Sparse regression and
EQL have their own application scopes. Sparse regression is widely used to
discover the underlying PDEs because there are oftendiscernible patterns in
the modelling of PDEs. EQL networks can seamlessly interface with high-
dimensional data, such as satellite imagery, enabling end-to-end learning
processes and exploring these hidden mechanisms behind high-
dimensional data.

The benchmarks of accuracy, speed, and tolerance to data noise for
symbolic regression methods63–66 and sparse regression67 have been
performed. It has shown that sparse regression has a low computational
cost and few hyperparameters. In contrast, symbolic regression
approaches provide an opportunity to discover underlying equations
with complex structures, while the main limitation is computational
cost. Deep learning-based approaches are more robust to noisy and
sparse data such as deep reinforcement learning. They are therefore
recommended to deal with geoscientific applications where flawed
datasets are common43. In terms of required prior information, sparse
regression needs more domain expert input and assumptions, such as
the general form of the underlying governing equations. Therefore,
sparse regression could fail if incorrect or incomplete prior information
is introduced, i.e., the candidate library matrix in sparse regression36. In
contrast, symbolic regression can realise learning from scratch, while we
can incorporate some physical information in different ways to discover
the underlying equations accurately.

Nowadays, most of the proposed algorithms have open-source code
available. For example, PySR and SymbolicRegression.jl68, implemented in

the Python and Julia languages, encapsulate symbolic regression methods.
PySindy69, developed in Python, can be used for sparse regression. These
tools can significantly lower the technical barriers to implementing
advanced and complex algorithms, paving the way for geoscientists to
engage in data-driven equation discovery. It is worth noting that this field is
rapidly evolving, so close attention is necessary to obtain algorithms with
superior performance, especially considering accuracy, speed, and
robustness.

Opportunities for advancing geosciences
Data-driven equation discovery provides promising opportunities for
advancing geosciences. Figure 5 summarizes these aspects, and the detailed
descriptions are as follows.

Enhancing classical governing equations
The conventional derivation of equations inevitably involves a degree of
empiricism, such as selecting and defining variables, conditional assump-
tions, and simplifications. The new paradigm offers an alternative to these
locally empirical methods and promotes improved subsequent derivation,
leading to better structure governing equations. For example, it allows the
exploration of improved forms of water retention curve equations in sub-
surface hydrology70 or the study of moisture sensitivity of soil heterotrophic
respiration71.

Replacing black-box models with explicit expressions
Due to long-standing challenges in parameter calibration and estimation
and precision issues, many geoscience equations are being replaced by
black-box models, such as those based on machine learning. Through the
data-drivendiscovery paradigm, it is possible to derive equationmodels that
maintain consistent performance and offer greater interpretability and
physical relevance. For instance, in hydrology, this approach allows for
deriving hydro-pedotransfer functions with precise and explicit forms72.
Additionally, these explicit governing equations may facilitate a more

Fig. 3 | The overview of the data-driven equation discovery workflow in practice.
The first step is data collection and preprocessing, then selecting proper approaches
based on specific tasks. A detailed description of different approaches can be found

in Supplementary Note 1. Based on the selected algorithms, the governing equations
can be discovered. Finally, the discovered equations should be validated and phy-
sically interpreted.
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straightforward assessment of potential underlying biases learned from the
data, offering an advantage over the opacity of black-box models. For
instance, recently, it showed that data-driven equation discovery can learn
new physics for the atmosphere and replace costly modules in cloud
parameterizations16,47.

Improving traditional controversial governing equations
When a system is not entirely understood, the derivation process may be
prone to cognitive biases. These biases can introduce errors in the equations
or lead to significant controversy in their formulation. The data-driven
paradigm can address such controversies. A pertinent example is using
fractional-order equations in Earth systems characterised by scale or
memory effects73, whose rationality could be clearer andoften sparks debate.
Applying the new approach could provide clarity and resolve these ongoing
controversies.

Uncovering missing equations
The new paradigm is adept at uncovering previously unrecognised
variables or processes, particularly in data-rich scenarios. Integrating
interdisciplinary data across the geosciences can reveal complex inter-
actions that may remain elusive when individual disciplines are con-
sidered separately. For example, climate scientists can use these newly
discovered equations to refine climate models, deepening our under-
standing and improving climate change predictions. An explicit
expression for the concentration-flow relationship (C-Q) may be found
in water quality science. Similarly, it may be possible to establish equa-
tions linking vegetation structure to radar backscatter in satellite biomass
mapping74,75.

Accelerating scientific discoveries and high-quality data
collection
The real-time nature of the data-driven discovery approach bypasses the
need for slow, theory-based development from first principles, potentially
accelerating the pace of scientific discovery in geoscience. Moreover, the
increasing emphasis on data-driven methods in this field may promote
advancements in data collection technologies, leading to the acquisition of
more diverse and high-quality datasets.

Challenges and potential solutions
Despite the promise, several challenges must be addressed before fully
realising the benefits of data-driven discovery for geosciences. From our
perspective, these challenges encompass three main aspects: data,
geoscience processes, and validations, which are briefly summarised in
Table 1. These challengesdonot diminish the potential of the newparadigm
but rather represent opportunities for collaboration between geoscientists
and data scientists to promote artificial intelligence as a truly powerful tool
to advance geoscience.

Data perspective

(1) Discovering governing equations from sparse and noisy geoscientific
data: While data is becoming increasingly abundant, there are still
instances in many geoscientific domains where accurate and extensive
datasets still need to be improved. This data sparsity is characterised by
temporal and spatial coverage inconsistencies, which will persist as a
long-term feature despite the potential for richer datasets in the
future76.Additionally, they are frequently corruptedbynoise, involving

Box 2 | Example workflow of data-driven equation discovery

Goal
This example shows the discovery of the governing PDE of one-
dimensional groundwater flow without source or sink terms in a satu-
rated, homogeneous, confined aquifer to illustrate the general and
practical workflowof discovering governing equations fromdata that can
be widely applied in geoscience. Here, ∂h∂t ¼ S�1

s K ∂2h
∂x2 it is assumed to be

the true governingPDE,whereSs ¼ 10�2m�1 is the specific storage, and
K ¼ 0:01md�1 is the hydraulic conductivity. The goal is to rediscover this
known equation from observational data.
Data collection and preprocess
As the first step, discovering PDEs requires spatial and temporal state
variable data (in this case, hydraulic head), typically obtained through
laboratory experiments or field monitoring. Generally, data is recom-
mended to be collected as densely as possible in space and time to
accurately capture the system behaviour, depending on practical sensor
capabilities and cost. The requirement for the length of the time series
depends on whether short-term or long-term system behaviour is of
interest. On the other hand, the number of samples can be manageable,
and usually, an order of magnitude of hundreds to thousands can be
sufficient. In this specificexample, thedataare collectedat 100pointsper
1m, and the data monitoring starts on day 0 and ends on day 100, with
records taken at 0:1d intervals. The data should be preprocessed,
including quality control and normalisation. For example, when dealing
with a small number of missing values, it is recommended to utilise spline
orDNNs to fit all thecollecteddata to reduce the influenceof thedatagap.
Normalisation can be used to reduce the impact of different scales of
potential equation terms.
Methods selection
Then, appropriate data-driven discovery approaches must be selected
based on the objective and tailored to each case’s specifics. For PDE

discovery tasks, sparse regression is considered here. The detailed
selection criteria are given in the main text.
Equation discovery
When implementing the sparse regression, the first step is to build a
comprehensive candidate library. The purpose of creating such an
overcomplete library is to ensure that it includes all possible terms that
could accurately represent the dynamics described by the equation. This
extensive collection might consist of but is not limited to, various poly-
nomial terms, trigonometric functions, exponential functions, and their
derivatives. For example, derivatives up to the third order and their
second-order combinations can be considered as candidate terms, i.e.,

Θ ¼ ½h; ∂h∂x ; ∂
2h
∂x2 ;

∂3h
∂x3 ;h

2;h ∂h
∂x ;h

∂2h
∂x2 ;h

∂3h
∂x3 ; ð∂h∂xÞ

2
; ∂h∂x

∂2h
∂x2 ;

∂h
∂x

∂3h
∂x3 ;

ð∂2h∂x2Þ
2
; ∂

2h
∂x2

∂3h
∂x3 ; ð∂

3h
∂x3Þ

2�.
Subsequently, the derivatives in the candidate library must be esti-

mated from discrete data. Several methods are available to accomplish
this goal. For example, the finite difference method can be applied to
approximate these derivatives from discrete data points such that the
overdetermined system Ut ¼ Θ Uð ÞΞ can be constructed. Here Ξ is
unknown and can be solved by various sparsity-promoting regression
techniques, e.g., STRidge28. Finally, the discovered PDE, in this case, is
∂h
∂t ¼ 0:99 ∂2h

∂x2, which is close to the true governing equation.
Validation and interpretation
It is crucial to conduct a rigorous validation of the discovered PDE, such
as cross-validation with independent data, to assess its robustness and
generalizability. For example, this PDE could be applied to predict water
flow in different aquifers. Moreover, it is important to ensure that the
equation is not only mathematically sound, physically interpretable, and
consistent with established geoscientific principles for its meaningful
application.
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diverse noise sources, uncertainties, data missing, and gaps. Data-
driven discovery is required to deal with sparse and noisy data29,40.
Generally, direct observations often involve state variables such as
temperature, pressure, and concentration. However, equation dis-
covery tasks typically rely on derivatives of these variables with respect

to space and time to capture dynamic changes. Obtaining these
derivatives involves numerical approximations that can introduce
errors affecting the accuracy of the discovered equations77. Conven-
tional finite difference methods78 would quickly deteriorate when
dealing with sparse and noisy data. Fortunately, several approaches

Fig. 4 | Data-driven equation discovery approaches in geosciences. The approa-
ches can be divided into two main categories: symbolic regression and sparse
selection algorithms. It is noted that some methods inherently utilise deep learning
techniques as part of their core algorithms. At the same time, some can be structured

to be compatible with deep learning, allowing for integration that enhances their
capabilities. A detailed description of each approach is given in Supplemen-
tary Note 1.
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have been developed to discover equations from such data, such as
smoothing methods79,80, weak-form formulas81, targeted denoising
methods82,83, and deep neural networks40,55. The selection depends on
the specific types of geoscience processes and should be carefully
chosen84,85. For instance, the low-rank property of physical system
dynamics can be utilised to preprocess large-scale observational
datasets86. Continued efforts are needed to deal with datasets
characterised by extreme noise and significant sparsity.

(2) Distilling underlying equations from high-dimensional big Earth data:
Recently, certain geoscience domains have experienced notable shifts
in data access, mainly attributed to the proliferation of satellite-based
and in-situ sensors10,76 (e.g., International Soil Moisture Network87

provides a large amount of in-situ soil moisture measurements).
Harnessing these vast and varied data and extracting meaningful
insights has proven to be a challenge76,88. Data-driven equation
discovery has providedopportunities tomake sense of this data deluge.
For example, it has been demonstrated that EQL networks can be
seamlessly integrated with high-dimensional data to explore hidden
mechanisms and discover governing equations89. When dealing with
these complex in-suite data, one limitation is that these data need an
effective coordinate system. Data-driven equation discovery
approaches may only succeed with proper coordinates. For example,
when dealing with irregular measurements (e.g., temperature at
different locations) in a complicated geometry, coordinate transforma-
tions are inevitable to obtain equations for temperature dynamics.

Fortunately, systematic and automated discovery of the latent
coordinate representation has been realised, such as deep autoencoder
networks90–94. It is possible to discover proper coordinates and
equations from unorganized measurement data. Another limitation
is the need for considerable computational resources when dealing
with large datasets40. The amount of data that can be ingested and
utilised positively correlates with available computing resources.
Recently, some emerging efficient computing methods, including
parallel processing, distributed computing, and dedicated hardware
such as GPUs, have shown promise in solving this challenge12.

(3) Leveraging imbalance data tofind governing equations: It is an obvious
feature that some parts of the Earth system have more available data
than others; for example, above-ground data are richer than below-
ground76. Imbalanced data can lead to potential implicit biases in data-
driven models, thus affecting the discovered equations. For instance,
the accuracy of wet and dry end coefficients is reduced when the soil
waterflow equation is derived fromdatasetswith fewer observations of
extreme wet and dry scenarios95. To minimise the impact of data
imbalance, data preprocessing is straightforward but effective, such as
controlling the data distribution or augmenting the data with deep
learning methods to make the data richer and more balanced.
However, such simple preprocessing may only be feasible for
univariate governing equation discovery. However, using unbalanced
multivariate data to find governing equations for multiple processes
still needs further research. One possible strategy is to integrate multi-
fidelity deep learning96 and generative deep learning97 with equation
discovery tasks. Multi-fidelity deep learning can integrate data from
multiple sources to improve the accuracy of discovered equations.
Generative deep learning can create synthetic data that enhances the
dataset, enabling more accurate and robust identification of the
underlying equations governing the system. In summary, biases
hidden in unbalanced datasets should be treated with caution and the
equations found need to be carefully validated to ensure reasonable
results.

Geoscience perspective
Complex geophysical, -chemical, and -biological processes are common in
geoscience andplay a crucial role in shaping theEarth’s surface, climate, and
geological features. These processes involve multiple interacting compo-
nents, can occur on transient to extended time scales, and usually span
multiple spatial scales. Data-driven equation discovery provides effective
ways to describe these interactions but also faces several challenges, as listed
below. These challenges are often interrelated rather than isolated in real-
world scenarios, necessitating a holistic consideration.
(1) Equation discovery for nonlinear processes with parameter depen-

dencies: Many geoscience processes exhibit nonlinear behaviour and

Fig. 5 | The overview of opportunities for using data-driven equation discovery to
advance geosciences. Based on various datasets collected in the Earth system, data-
driven discovery is expected to discover new equations, thereby enhancing existing

equations, model transparency, and finally accelerating scientific discoveries. In
turn, it will also facilitate the collection of higher-quality data.

Table 1 | Overview of challenges for data-driven equation
discovery in geosciences

Perspective Challenges

Data Discovering equations from sparse and
noisy data

Distilling equations from high-
dimensional big Earth data

Dealing with imbalanced datasets

Geoscience Discovering equations of nonlinear
processes with parameter dependencies

Extracting equations across multiple
spatial and temporal scales

Identifying multivariable equations of
multiple connected processes

Dealing and quantifying with
uncertainties

Validation Physical interpretation and
comprehensive validations
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can vary significantly in space and time, and the heterogeneity can
introduce parametric variability into the underlying governing equa-
tions. Several challenges remain to overcome. For instance, sparse
regression can discover nonlinear PDEs when nonlinear terms are
included in the candidates, but this can be difficult when dealing with a
new system98. In addition, symbolic regression may easily converge
prematurelywhen searching for complexnonlinear equations,which is
inefficient and impractically slow. A worthwhile step could be inte-
grating some geophysical information, such as symmetry and
dimensional analysis, as it can speed up the search process. On the
other hand, due to the coupled effects of parametric dependencies and
equation structure on geoscientific dynamics, it is hard to separate and
identify them. Group sparse regression38,99,100 and the kernel
approach101 have been applied to resolve it. Nevertheless, it is still
intractablewhendealingwithhighlynonlinear and complexcoefficient
fields, common in various geoscientific domains. For example,
hydraulic conductivity, one of the parameters in the groundwater flow
equation, can vary in magnitude by several orders of magnitude on
microscopic spatial scales. Furthermore, key vegetation parameters in
global carbon cycle models also vary spatially, mainly as a function of
biodiversity102. In addition, current methods rely primarily on
assumptions such as smoothness and symmetry, which are absent in
some systems. Therefore, further approach development is still
needed101.

(2) From data to governing equations for multiscale interactions:
Geoscience processes can span multiple spatial and temporal scales.
While micro-scale interactions may be well described by governing
equations derived from first principles, the macroscopic behaviour
may sometimes fail to follow directly. For example, in the groundwater
flow, the assumptions of homogeneity and continuity are typically
based on the representative elementary volume scale, a virtual volume
thatmay not hold at larger or smaller scales103. Despite thesemodelling
difficulties, observational data is much more accessible for some
macroscopic interactions. A notable direction is combining the data-
driven discovery with microscopically simulated data46,104,105. Since
microsimulation does not assume any macroscopic governing
equations a priori, it can be a valuable approach to verify already
derivedgoverning equations106 and to reveal yet unknownmacroscopic
governing equations104. For instance, macroscale PDE for proppant
transport in subsurface geoscience has been successfully discovered104.
Experimental data can also be explored: an example is the
quantitatively accurate equation for weakly turbulent fluid flow, albeit
in a complicated and high-dimensional nonequilibrium system,
discovered from velocity field measurements107. These pioneering
works have demonstrated the potential of discovering multiscale
interactions governing equations from data.

(3) Identifying equations with multiple connected processes: Geoscience
processes often involve numerous interacting factors and require
multiple and multivariable governing equations to describe them.
Data-driven equation discovery can potentially find multiple inter-
related process equations, which may lead to insights into cross-
temporal and cross-scale linkages. For instance, the study of terrestrial
ecosystem dynamics can significantly benefit from holistically
identifying the equations of multiple interacting factors such as
vegetation succession and competition, root zone water transport,
plant allocation to leaves, stems, and roots, and impacts of fire on
vegetation states and atmospheric emissions108. An essential pre-
requisite for identifying equations with multiple interrelated processes
is the definitionof appropriate variables. In ahigh-dimensional system,
the relevant set of state variables is typically unknown, and identifying
them is generally a laborious task that demands considerable scientific
effort. Defining compact and complete variables is essential for
discovering parsimonious governing equations. The automatic
identification of interpretable and physically consistent state variables
remains a challenging and intractable problem. Methods such as

geometric manifold learning, a machine learning approach for
dimensionality reduction by uncovering the intrinsic structure or
geometry of high-dimensional data, have been devised to automate the
discovery of fundamental variables hidden in time-series data109 or
high-dimensional data (e.g., video data)110. These advances in data-
driven discoverymethods hold promise for addressing the bewildering
variety of information that confronted early scientists109–111.

(4) Extracting equations for geoscience processes with uncertainty and
identifiability: In various processes and phenomena within the Earth
system, there are inherent, unavoidable factors of uncertainty. This
uncertainty can originate from multiple aspects, for example, natural
variability can introduce stochastic elements. It is crucial to discover
equations to capture the uncertainty and extrapolate better in different
uncertain scenarios112. Discovering stochastic equations from data in
the presence of such uncertainty is a complex task. However,
approaches such as variational Bayesian inference make it feasible to
learn stochastic governing equations and quantify uncertainties
directly from data113–116. In addition, adopting techniques such as
sensitivity analysis117 and ensemblemethods118 is promising to address
the uncertainties in the equation discovery tasks. Moreover, many
geoscience processes often occur as nonequilibrium, such as transient
behaviour and critical thresholds or abrupt transitions, making it
challenging to identify equations that account for sudden changes in
behaviour. The task of inferring non-stationary dynamics from
stochastic observations, explored in recent studies119, is a critical step
in this direction.

Validation perspective
Generally, the formulation of governing equations should follow Occam’s
Razor, balancing parsimony with accuracy120. However, assessing the
complexity of the underlying equation before its discovery and validation
remains challenging. Pareto frontier analysis34 is recommended to address
this, which involves using a series of progressively complex formulas to
improve accuracy incrementally. For instance, independent validation for
sets of proposed governing equations for the carbon cycle has allowed the
determination of their optimal complexity given the information content of
the calibration data121. Moreover, information criteria have been used to
select the best equations that balance model parsimony and predictive
power, such as the Akaike information criterion122, the Bayesian informa-
tion criterion123 and the Bayesian machine scientist113. However, these
information criteria, which are often derived under the assumption that the
likelihood function is based on Gaussian errors, may not work well when
dealing with non-Gaussian noise, which is common in geoscience, as many
complex natural processes are not well-described by simple Gaussian dis-
tributions. In addition, automated interpretation of newly revealed gov-
erning equations is generally limited and still requires careful validation by
geoscientific domain experts to ensure that the equations align with estab-
lished principles and theories55. In practice, it is helpful to incorporate
known physical constraints124 into data-driven discovery approaches or to
leverage prior knowledge to guide discovery approaches.Models must obey
built-in conservation laws or certain symmetries for the discovered equa-
tions to be consistent with established principles. It is worth noting that the
selection of constraints should be reasonable, as it might also introduce
biases. Furthermore, data-driven equation discovery has been preliminarily
shown to understand hidden functional relationships and generalize them
from observations to unknown parameter spaces62. It initially indicates that
it is a powerful tool to help us model complex geoscience processes, but
further validation is needed in the future.

Summary and future perspectives
Geoscience communities are confronted with increasingly intricate scien-
tific questions, prompting the exploration of more advanced methods to
resolve these challenges better. In this Perspective, our contributions are
introducing the data-driven equation discovery tomeet the unique needs of
modern geosciences. Through the detailed discussions about the potential
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opportunities, we advocate that the new data-driven discovery is helpful in
modelling and understanding numerous processes within the Earth system,
especially those with potentially complicated mechanisms and available
observational datasets. It is highly relevant to awide range of geoscientists in
their everyday research routines, aligning with the diverse research needs
across the field. We argue that although the discovered equations are not
necessarily meant to be causal, they frequently serve the purpose of creating
a highly detailed testbed for the study of feedback. This is the first time we
have objective measures of (semi)parametric model evaluation, inter-
comparison and selection learned from data.

We advocate that this emerging field provides opportunities for
interdisciplinary collaboration, enabling the cooperative development of
more advanced and adapted methods for geoscience, as they cannot be
solved by either geoscientists or data scientists alone. Developing these
interdisciplinary approaches and using interdisciplinary data in geosciences
can reveal scientific insights that would be difficult to discover if individual
disciplines were studied in isolation but are easy and feasible for data-driven
equation discovery.

Furthermore, it is important to note that, like most data-driven
methodologies, the selection of datasets can introduce bias, which can
subsequently impact the final equations generated. To mitigate this, tech-
niques such as cross-validation should be employed to minimise the
potential for errors. Moreover, the equations obtained must be interpreted
in a logical and rational manner to guarantee their scientific validity and
coherence. In conclusion, we highlight that data-driven equation discovery
should be employed for scientific discovery in a comprehensive and
responsible manner.

We believe that data-driven equation discovery is expected to con-
sistently facilitate our comprehension of geoscience processes and even
reshape the foundations of geosciences. The discovered insights have the
potential to challenge existing geoscientific theories and models. While the
initial response from the community may lean towards scepticism or
resistance, sustained scientific validation over time could lead these inno-
vative insights to redefine fundamental concepts in geosciences. In the past
few years, we have witnessed artificial intelligence’s remarkable and rapid
success in applied geoscience endeavours. We anticipate that data-driven
methods will soon offer similarly significant contributions to our scientific
understanding by aiding in the discovery of governing equations, which
have seen slow progress in the field over the past decades.

Data availability
Thedata of the case study shown inBox2 canbe found at https://doi.org/10.
5281/zenodo.13735843.

Code availability
The case study shown in Box 2 can be reproduced with Python code pro-
vided at https://doi.org/10.5281/zenodo.13735843.
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