001033840 001__ 1033840
001033840 005__ 20250624202310.0
001033840 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06681
001033840 037__ $$aFZJ-2024-06681
001033840 041__ $$aEnglish
001033840 1001_ $$0P:(DE-Juel1)188691$$aKuriakose, Neethu$$b0$$ufzj
001033840 1112_ $$aMEMRISYS 2024$$cSeoul$$d2024-11-10 - 2024-11-13$$wSouth Korea
001033840 245__ $$aIntegrated Memristor Control and Crossbar Array Design using TSMC 28 nm Technology
001033840 260__ $$c2024
001033840 3367_ $$033$$2EndNote$$aConference Paper
001033840 3367_ $$2DataCite$$aOther
001033840 3367_ $$2BibTeX$$aINPROCEEDINGS
001033840 3367_ $$2DRIVER$$aconferenceObject
001033840 3367_ $$2ORCID$$aLECTURE_SPEECH
001033840 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1750766869_5527$$xAfter Call
001033840 502__ $$cUniversity of Duisburg Essen
001033840 520__ $$aThe crossbar array architecture with memristors is used for vector matrix multiplication (VMM) and acts askernels in neuromorphic computing [1]. A conductance control scheme with a regulated voltage source willimprove the architecture and reduce the possible potential divider effects due to line resistances [2]. A change inconductance is also possible with the provision of a regulated current source and measuring the voltage acrossthe memristor. A regulated 2T1R memristor conductance control architecture is proposed in this work, whichavoids the potential divider effect and virtual ground scenario in a regular crossbar scheme, as well as conductancecontrol by passing a regulated current through memristors as shown in Fig. 1. The sneak path current is notallowed to enter by providing the ground potential to both terminals of memristors. The control architecture witha 2×2 array size is successfully taped out in a 28 nm CMOS technology. The MEMCTRL block includes a corecorresponding to the intended conductance control architecture, incorporating voltage mode control and currentmode control in two rows, core biasing circuits, resistive DAC, and a digital control block for the pulse widthgenerator with chip layout shown in Fig. 2. The pulse width control and digital configurations for selecting rowsand columns are done with an integrated RISC-V processor, running with a clock frequency of up to 100 MHz.Alternatively, direct access is enabled through a JTAG programming interface. The readout circuit is implementedwith a current source SAR ADC. The overall size of the chip is 1.4 mm by 1.0 mm, of which the memristor controlcircuit incorporates an area of 0.4 mm by 0.5 mm. The memristors are not co-integrated in this architecture,however, pins are provided for accessing external memristors.
001033840 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001033840 65027 $$0V:(DE-MLZ)SciArea-250$$2V:(DE-HGF)$$aOthers$$x0
001033840 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
001033840 7001_ $$0P:(DE-Juel1)176328$$aAshok, Arun$$b1$$ufzj
001033840 7001_ $$0P:(DE-Juel1)187432$$aKusuma, Sabitha$$b2$$ufzj
001033840 7001_ $$0P:(DE-Juel1)159350$$aGrewing, Christian$$b3$$ufzj
001033840 7001_ $$0P:(DE-Juel1)145837$$aZambanini, Andre$$b4$$ufzj
001033840 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b5$$ufzj
001033840 7001_ $$0P:(DE-Juel1)156521$$aKruth, Andre$$b6$$ufzj
001033840 8564_ $$uhttps://www.memrisys2024.org/
001033840 8564_ $$uhttps://juser.fz-juelich.de/record/1033840/files/MEMRISYS_2024_Integrated%20Memristor%20Control%20and%20Crossbar%20Array%20Design%20using%20TSMC%2028%20nm%20Technology.pdf$$yOpenAccess
001033840 909CO $$ooai:juser.fz-juelich.de:1033840$$pVDB$$popen_access$$popenaire$$pdriver
001033840 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188691$$aForschungszentrum Jülich$$b0$$kFZJ
001033840 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176328$$aForschungszentrum Jülich$$b1$$kFZJ
001033840 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187432$$aForschungszentrum Jülich$$b2$$kFZJ
001033840 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159350$$aForschungszentrum Jülich$$b3$$kFZJ
001033840 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145837$$aForschungszentrum Jülich$$b4$$kFZJ
001033840 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b5$$kFZJ
001033840 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156521$$aForschungszentrum Jülich$$b6$$kFZJ
001033840 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001033840 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033840 920__ $$lyes
001033840 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
001033840 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lIntegrated Computing Architectures$$x1
001033840 980__ $$aconf
001033840 980__ $$aVDB
001033840 980__ $$aUNRESTRICTED
001033840 980__ $$aI:(DE-Juel1)ZEA-2-20090406
001033840 980__ $$aI:(DE-Juel1)PGI-4-20110106
001033840 9801_ $$aFullTexts
001033840 981__ $$aI:(DE-Juel1)PGI-4-20110106