001     1033882
005     20251024202101.0
037 _ _ |a FZJ-2024-06720
100 1 _ |a Quercia, Alessio
|0 P:(DE-Juel1)188471
|b 0
|e Corresponding author
|u fzj
111 2 _ |a IEEE/CVF Winter Conference on Applications of Computer Vision
|g WACV
|c Tucson
|d 2025-02-28 - 2025-03-04
|w USA
245 _ _ |a Enhancing Monocular Depth Estimation with Multi-Source Auxiliary Tasks
260 _ _ |c 2025
300 _ _ |a 8
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1761306747_21804
|2 PUB:(DE-HGF)
520 _ _ |a Monocular depth estimation (MDE) is a challenging task in computer vision, often hindered by the cost and scarcity of high-quality labeled datasets. We tackle this challenge using auxiliary datasets from related vision tasks for an alternating training scheme with a shared decoder built on top of a pre-trained vision foundation model, while giving a higher weight to MDE. Through extensive experiments we demonstrate the benefits of incorporating various in-domain auxiliary datasets and tasks to improve MDE quality on average by ~11%. Our experimental analysis shows that auxiliary tasks have different impacts, confirming the importance of task selection, highlighting that quality gains are not achieved by merely adding data. Remarkably, our study reveals that using semantic segmentation datasets as Multi-Label Dense Classification (MLDC) often results in additional quality gains. Lastly, our method significantly improves the data efficiency for the considered MDE datasets, enhancing their quality while reducing their size by at least 80%. This paves the way for using auxiliary data from related tasks to improve MDE quality despite limited availability of high-quality labeled data. Code is available at https://jugit.fz-juelich.de/ias-8/mdeaux.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
700 1 _ |a Yildiz, Erenus
|0 P:(DE-Juel1)191034
|b 1
|u fzj
700 1 _ |a Cao, Zhuo
|0 P:(DE-Juel1)199019
|b 2
|u fzj
700 1 _ |a Krajsek, Kai
|0 P:(DE-Juel1)129347
|b 3
|u fzj
700 1 _ |a Morrison, Abigail
|0 P:(DE-Juel1)151166
|b 4
|u fzj
700 1 _ |a Assent, Ira
|0 P:(DE-Juel1)188313
|b 5
|u fzj
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 6
|u fzj
909 C O |o oai:juser.fz-juelich.de:1033882
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188471
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)191034
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)199019
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)151166
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)188313
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129394
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21