001033885 001__ 1033885
001033885 005__ 20250310131246.0
001033885 0247_ $$2doi$$a10.1088/1742-6596/2885/1/012013
001033885 0247_ $$2ISSN$$a1742-6588
001033885 0247_ $$2ISSN$$a1742-6596
001033885 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06723
001033885 0247_ $$2WOS$$aWOS:001407642900013
001033885 037__ $$aFZJ-2024-06723
001033885 041__ $$aEnglish
001033885 082__ $$a530
001033885 1001_ $$0P:(DE-HGF)0$$aPunnoli Valayanad, Swathikrishna$$b0
001033885 1112_ $$a4th European Symposium on Fire Safety Science$$cBarcelona$$d2024-10-09 - 2024-10-11$$wSpain
001033885 245__ $$aAI-Based Material Parameter Prediction from Cone Calorimeter Measurements
001033885 260__ $$aBristol$$bIOP Publ.$$c2024
001033885 300__ $$a6
001033885 3367_ $$2ORCID$$aCONFERENCE_PAPER
001033885 3367_ $$033$$2EndNote$$aConference Paper
001033885 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
001033885 3367_ $$2BibTeX$$aINPROCEEDINGS
001033885 3367_ $$2DRIVER$$aconferenceObject
001033885 3367_ $$2DataCite$$aOutput Types/Conference Paper
001033885 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1734168592_20062
001033885 520__ $$aIn pyrolysis simulation, methods such as inverse modelling are used to determine the material parameters from small-scale experiments. This often requires significant computational resources due to its iterative nature. This study investigates an artificial intelligence (AI)based alternative approach, that can give instantaneous predictions for material parameters once trained. A dataset based on Fire Dynamics Simulator (FDS) simulation of a cone calorimeter experiment is used for training these AI models. Di!erent AI models are trained to predict polymethyl methacrylate’s thermo-physical parameters using heat release rate (HRR) curves as input. AI models including Random Forest, 1D-convolution, and Recurrent Neural Networks showed the ability to predict the material parameters accurately with low mean squared error on the test dataset. These models were also able to recreate the HRR curves in FDS using their predictions, following the trend of the experimental HRR curve closely. Expanding the dataset to include materials with di!erent behaviours and modelling di!erent experiments could give these AI models broader applicability. However, FDS version dependence is a limitation for the AI models explored here because they were trained on a simulation-based dataset. Looking at the results, AI models in general can be used to predict material parameters required for pyrolysis modelling, potentially saving time and e!ort or, at the very least, used to complement the existing inverse modelling approaches.
001033885 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001033885 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001033885 7001_ $$0P:(DE-Juel1)132044$$aArnold, Lukas$$b1$$ufzj
001033885 773__ $$0PERI:(DE-600)2166409-2$$a10.1088/1742-6596/2885/1/012013$$gVol. 2885, no. 1, p. 012013 -$$n1$$p012013 -$$tJournal of physics / Conference Series$$v2885$$x1742-6588$$y2024
001033885 8564_ $$uhttps://juser.fz-juelich.de/record/1033885/files/Valayanad%20and%20Arnold%20-%20AI-Based%20Material%20Parameter%20Prediction%20from%20Cone%20Calorimeter%20Measurements.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
001033885 909CO $$ooai:juser.fz-juelich.de:1033885$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001033885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132044$$aForschungszentrum Jülich$$b1$$kFZJ
001033885 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001033885 9141_ $$y2024
001033885 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033885 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001033885 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-20$$wger
001033885 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
001033885 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
001033885 920__ $$lyes
001033885 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
001033885 980__ $$acontrib
001033885 980__ $$aVDB
001033885 980__ $$aUNRESTRICTED
001033885 980__ $$ajournal
001033885 980__ $$aI:(DE-Juel1)IAS-7-20180321
001033885 9801_ $$aFullTexts