001033886 001__ 1033886
001033886 005__ 20250310131237.0
001033886 0247_ $$2doi$$a10.1088/1742-6596/2885/1/012108
001033886 0247_ $$2ISSN$$a1742-6588
001033886 0247_ $$2ISSN$$a1742-6596
001033886 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06724
001033886 0247_ $$2WOS$$aWOS:001407642900108
001033886 037__ $$aFZJ-2024-06724
001033886 082__ $$a530
001033886 1001_ $$0P:(DE-HGF)0$$aDöhle, Daniele$$b0
001033886 1112_ $$a4th European Symposium on Fire Safety Science$$cBarcelona$$d2024-10-09 - 2024-10-11$$wSpain
001033886 245__ $$aEvaluation of GPU-based Conductive Heat Transfer Algorithms
001033886 260__ $$aBristol$$bIOP Publ.$$c2024
001033886 300__ $$a7
001033886 3367_ $$2ORCID$$aCONFERENCE_PAPER
001033886 3367_ $$033$$2EndNote$$aConference Paper
001033886 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
001033886 3367_ $$2BibTeX$$aINPROCEEDINGS
001033886 3367_ $$2DRIVER$$aconferenceObject
001033886 3367_ $$2DataCite$$aOutput Types/Conference Paper
001033886 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1733317291_18814
001033886 520__ $$aThe one-dimensional heat transfer algorithm of the Fire Dynamics Simulator (FDS) is currently implemented to run on a CPU (Central Processing Unit). This study explores the potential advantages of adapting the algorithm for Graphics Processing Units (GPUs), which could o!er significant computational benefits. The motivation behind this work stems from the intention to speed up numerical fire simulations. Up to now, simplifications with regard to grid resolution and level of detail have been made, compromising accuracy for quicker results. Simulations, especially for heat transfer in solid objects such as walls, require computationally intensive resources. By leveraging the GPUs’ superior parallel processing capabilities, it is possible to conduct faster and more accurate simulations, avoiding these compromises. Both a CPU and a GPU algorithm for computing the 1D heat transfer are developed, and the computation time is compared against each other. Both implementations are validated against a simple FDS simulation with identical boundary conditions. The investigations show that the GPU algorithm is promising above a certain number of wall elements, depending on the employed hardware. The results show that this is generally the case from 2048 elements.
001033886 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001033886 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001033886 7001_ $$0P:(DE-Juel1)186603$$aBörger, Kristian$$b1$$ufzj
001033886 7001_ $$0P:(DE-Juel1)132044$$aArnold, Lukas$$b2$$eCorresponding author$$ufzj
001033886 773__ $$0PERI:(DE-600)2166409-2$$a10.1088/1742-6596/2885/1/012108$$gVol. 2885, no. 1, p. 012108 -$$n1$$p012108 -$$tJournal of physics / Conference Series$$v2885$$x1742-6588$$y2024
001033886 8564_ $$uhttps://doi.org/10.1088%2F1742-6596%2F2885%2F1%2F012108
001033886 8564_ $$uhttps://juser.fz-juelich.de/record/1033886/files/Dohle%20et%20al.%20-%20Evaluation%20of%20GPU-based%20Conductive%20Heat%20Transfer%20Algorithms.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
001033886 909CO $$ooai:juser.fz-juelich.de:1033886$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001033886 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186603$$aForschungszentrum Jülich$$b1$$kFZJ
001033886 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132044$$aForschungszentrum Jülich$$b2$$kFZJ
001033886 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001033886 9141_ $$y2024
001033886 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033886 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001033886 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-20$$wger
001033886 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
001033886 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
001033886 920__ $$lyes
001033886 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
001033886 980__ $$acontrib
001033886 980__ $$aVDB
001033886 980__ $$aUNRESTRICTED
001033886 980__ $$ajournal
001033886 980__ $$aI:(DE-Juel1)IAS-7-20180321
001033886 9801_ $$aFullTexts