001     1033896
005     20251217202223.0
037 _ _ |a FZJ-2024-06734
100 1 _ |a Bangun, Arya
|0 P:(DE-Juel1)184644
|b 0
|u fzj
111 2 _ |a IEEE/CVF Winter Conference on Applications of Computer Vision
|g WACV 2025
|c Tucson, Arizona
|d 2025-02-28 - 2025-03-04
|w USA
245 _ _ |a MRI Reconstruction with Regularized 3D Diffusion Model (R3DM)
260 _ _ |c 2025
300 _ _ |a 1-8
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1765959251_26386
|2 PUB:(DE-HGF)
520 _ _ |a Magnetic Resonance Imaging (MRI) is a powerful imaging technique widely used for visualizing structures within the human body and in other fields such as plant sciences. However, there is a demand to develop fast 3D-MRI reconstruction algorithms to show the fine structure of objects from under-sampled acquisition data, i.e., k-space data. This emphasizes the need for efficient solutions that can handle limited input while maintaining high-quality imaging. In contrast to previous methods only using 2D, we propose a 3D MRI reconstruction method that leverages a regularized 3D diffusion model combined with optimization method. By incorporating diffusion-based priors, our method improves image quality, reduces noise, and enhances the overall fidelity of 3D MRI reconstructions. We conduct comprehensive experiments analysis on clinical and plant science MRI datasets. To evaluate the algorithm effectiveness for under-sampled k-space data, we also demonstrate its reconstruction performance with several undersampling patterns, as well as with in- and out-ofdistribution pre-trained data. In experiments, we show that our method improves upon tested competitors.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
700 1 _ |a Cao, Zhuo
|0 P:(DE-Juel1)199019
|b 1
|u fzj
700 1 _ |a Quercia, Alessio
|0 P:(DE-Juel1)188471
|b 2
|u fzj
700 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 3
|u fzj
700 1 _ |a Pfaehler, Elisabeth
|0 P:(DE-Juel1)191494
|b 4
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/1033896/files/MRI_Reconstruction_with_Regularized_3D_Diffusion_Model_R3DM.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1033896
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184644
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)199019
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188471
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129394
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)191494
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-8-20210421
|k IAS-8
|l Datenanalyse und Maschinenlernen
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-8-20210421
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21