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A B S T R A C T

Context or problem: Sustainable farming practices, including precision fertilization, water-saving irrigation and 
recycling of organic materials, have been implemented worldwide in recent decades to achieve high crop yields 
and minimize nonpoint source pollution. However, the comprehensive impacts of these agricultural practices 
have seldom been systematically evaluated in field production. As agricultural intensification started in the 
1980s, most previous studies focused on a single practice in the context of low land productivity.
Objective or research question: The objective of this research is to investigate and evaluate how holistic farming 
practices affect both crop production and environmental quality.
Methods: We reported findings from a 12-year experiment (2008–2020) in the highly intensive North China Plain 
(NCP) farming region, and conventional and optimized farming measures were compared. Three field treatments 
with annual double cropping (winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.)) were chosen 
in the study, i.e., control without nitrogen (N) application (CK), farmers’ conventional practices (CON), and 
optimized practices (OPT), were chosen for this study.
Results: Compared with the CON treatment, OPT reduced N fertilizer input by 41.4 % and irrigation water by 
27.1 % but produced similar grain yields; OPT increased the N recovery efficiency (REN) and N utilization ef
ficiency (NUT2E) by 90.4 % and 53.0 %, respectively; these values were much greater than the increases in REN 
(+56.1 %) and NUT2E (+25.5 %) when soil N change was not considered. Similarly, compared with those in the 
CON treatment, the soil N stock (0–60 cm) in the OPT treatment increased by 8.4 %, and the N loss via leaching, 
ammonia volatilization and N2O + NO + N2 decreased by 47.1 %, 11.4 % and 28.6 %, respectively.
Conclusions: Our study revealed that the integration of optimized practices of organic material recycling, pre
cision fertilization and water-saving irrigation substantially reduced N losses, mainly through decreased N 
leaching, but maintained fertilizer N in the root-zone soil layer, which is important for a sustainable and high- 
yield crop production.
Implications or significances: The dissemination of these optimized practices to other regions in China and beyond 
will be highly important for achieving the dual goals of food security and environmental protection.

1. Introduction

Conventional intensive agriculture has achieved high-yield crop 

production and has also placed considerable negative pressure on nat
ural resource utilization and water eutrophication, air pollution and soil 
degradation in China and worldwide (Beltran-Peña et al., 2020; Bolinder 
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et al., 2020; Ju and Zhang., 2017). The nitrogen (N) fertilizer use effi
ciency has decreased as agricultural intensification has progressed (Gu 
et al., 2017; Lassaletta et al., 2014b) during the past several decades, 
resulting in high-level waste and loss of fertilizer resources and soil 
degradation, through acidification and decreased fertility (Carlson et al., 
2017; Gu et al., 2015a; Guo et al., 2010). Sustainable intensification was 
initiated worldwide and employed as an alternative approach beginning 
in the 1980s (Cassman, 1999; Ruttan, 1991; Trenbath et al., 1990) to 
sustain high-yield crop production while reducing the associated 
adverse environmental impacts (Garnett et al., 2013; Huang et al., 
2018). In China, sustainable intensification practices such as optimizing 
and reducing fertilization and irrigation inputs have been implemented 
since the 2000s (Zhang et al., 2021).

Irrigation and fertilization are two important farming practices for 
crop production in uplands (Ren et al., 2022; Yin et al., 2021). On the 
North China Plain (NCP), one of the most intensive agricultural regions 
in China, fertilization inputs have been much excessive (up to 600 kg N 
ha− 1 yr− 1), and flood irrigation has ranged from 150 to 490 mm yr− 1 for 
annual double cropping systems of winter wheat (Triticum aestivum L.) 
and summer maize (Zea mays L.) since the 1980s (Fang et al., 2010). 
These practices have resulted in low N use efficiencies (NUEs) and high 
N losses via N leaching (10.6 %–18.2 %) and ammonia volatilization 
(10.0 %–17.6 %), and these two main pathways of N loss account for 
10.1 %–56.9 % and 29.4 %–95.9 %, respectively (Adalibieke et al., 
2021; Cui et al., 2013; Ma et al., 2021), of the total field reactive N (Nr) 
loss during the maize and wheat seasons. Since the 1990s, water-saving 
irrigation and precision fertilization have been employed in northern 
China to save groundwater resources and prevent nonpoint source 
pollution in the region (Zhang et al., 2017). However, most of the pre
vious studies monitored N losses within a short duration (1–3 years; 
Wang et al., 2019), and few studies monitored the major pathways of N 
loss (N leaching and ammonia volatilization) simultaneously (Gai, 2019; 
Zhang et al., 2018). The recycling of organic materials was also intro
duced in the 1990s to improve long-term land productivity in the region 
(Bolinder et al., 2020; Chen et al., 2011; Yin et al., 2018). Straw incor
poration increases crop yield, reduces N leaching and limits the down
ward movement of N in the soil (Meng et al., 2021), but the long-term 
effects need to be systematically evaluated. These studies highlighted 
that additional long-term studies are necessary to examine how these 
optimized farming practices holistically affect N loss, the soil N pool and 
crop production.

Precise quantification of NUE is highly necessary for evaluating the 
applicability of optimized farming practices at regional, national and 
global scales. The NUE indicators are usually defined as the partial factor 
productivity of N (PFP, in kilograms of grain per kilogram of N fertilizer 
applied) or the N recovery efficiency (REN, the difference in grain N 
harvested between farmland with and without fertilization divided by 
the N fertilizer rate; Cassman et al., 2002). In China, the national PFP 
increased from 27 kg grain kg− 1 Nfert in 1995 to 38 kg grain kg− 1 Nfert in 
2015 (Liu et al., 2020), and the REN decreased from 51 % in 1984 to 
35 % in 2003 and then increased steadily to 40 % in 2020 (Ministry of 
Agriculture and Rural Affairs, PRC 2020). These NUEs are mostly 
quantified by assuming that the soil N stock did not change during the 
experimental period (Quan et al., 2021). This approach is applicable for 
short-term experiments; however, in long-term fertilization experi
ments, the soil N stock may substantially change and thereby affect the 
accuracy of estimated N efficiencies (Ladha et al., 2005).

Many previous studies have focused on the effects of individual 
farming practices (such as the N rate, fertilizer type, straw incorporation 
and irrigation) on crop production and the environmental impacts 
(Adalibieke et al., 2021; Cui et al., 2013; Ma et al., 2021; Zhang et al., 
2017). However, given that actual crop production is typically influ
enced by multiple management practices together, exploring the inter
active effects of these farming variables in a more integrated manner is 
highly valuable (Rillig et al., 2019). Therefore, in 2008, a field experi
mental study on the NCP where agricultural intensification dominated 

was conducted to investigate and evaluate how holistic farming prac
tices together affect crop production and environmental quality. We 
aimed to validate the first hypothesis, i.e., optimized farming measures 
will ensure high-yield production in the long-term within the context of 
intensive conventional farming. The second hypothesis stated that N 
losses are proportionally reduced as excessive N fertilization decreases. 
The N efficiency and soil fertility were also evaluated during the 12-year 
experimental period to explore how good agricultural practices work 
together. Our findings will help in seeking effective and robust farming 
measures in cereal crop production for green agricultural development.

2. Methods

2.1. Study area and experimental design

We established the field experiment in October 2008 at the Huantai 
Experimental Station of China Agricultural University, Shandong Prov
ince (36◦51’50"–37◦06’00"N, 117◦50’00"–118◦10’40"E), which is 
located on the NCP. The region has a typical temperate monsoon 
climate, and the annual mean precipitation and air temperature are 
543 mm and 12.5◦C, respectively (Zhang et al., 2019). The soil parent 
materials are mainly Yellow River alluvial deposits, which have devel
oped into loamy soils classified as calcaric fluvisols (Liang et al., 2013), 
with a bulk density (BD) of 1.5 g cm− 3, pH (water: soil=2.5:1) of 7.7, soil 
organic matter content of 18.8 g kg− 1, and total nitrogen (TN) content of 
0.41 g kg− 1 (0–20 cm). The soil consists of 14.0 % clay (<0.002 mm), 
12.5 % silt (0.002–0.02 mm), and 73.5 % sand (0.02–2 mm) (Shi et al., 
2014). The cropping regime in the region consists of annual 
double-cropping of winter wheat from October to May of the following 
year and summer maize from June to September.

Three field treatments (4 replicate plots per treatment, for a total of 
12 plots, 450 m2 per plot) were chosen from the long-term field exper
iment: 1) CK: no N fertilizer input. Both wheat and maize straws were 
incorporated, and flood irrigation (100 mm per irrigation event) was 
applied, with no tillage before wheat sowing. 2) CON: Local farmers’ 
conventional practices (300 kg chemical fertilizer N ha− 1 season− 1 both 
for the winter wheat and summer maize seasons); only wheat straw was 
incorporated (maize straw was removed due to the high cost of manual 
and equipment). Similar to local farmer operations, crops were flooded 
with 100 mm of groundwater (well depth > 80 m) per irrigation event, 
and irrigated 3–5 times during the wheat season and 1–2 times during 
the maize season according to soil moisture and crop growth. The irri
gation water was delivered via plastic hoses, and flow meters were used 
to measure the water quantity. Rotary tillage was implemented 
(~15 cm) before wheat sowing each autumn. 3) OPT: N fertilizer input 
was determined by soil inorganic N testing and formulated fertilization 
(STFF): for both the wheat and maize seasons, a crop N demand of 
180 kg N ha− 1 per season was set for a target crop yield of 7.5 t ha− 1. The 
soil N supply, mainly nitrate N, was analyzed at the beginning of each 
season (Cui et al., 2008). The organic and chemical N fertilizer inputs, i. 
e., the difference between crop N demand (180 kg N ha− 1 season− 1) and 
the soil N supply, changed across the years due to variations in soil 
properties and crop production. For the 12-year experimental period, 
the average seasonal N fertilizer inputs for OPT were 161 (wheat season) 
and 191 N ha− 1 season− 1 (maize season), in which approximately 1/3 of 
the N fertilizer was from organic fertilizer (composted broiler manure; 
Table S1) and the other 2/3 was from chemical fertilizer. Both wheat 
and maize straw were incorporated, and water-saving irrigation was 
adopted with 75 mm per event on the same date as CON. The soil was 
deeply plowed (25–30 cm) before the wheat sowing in each autumn.

For the CON and OPT treatments, the ratio of basal N fertilizer to top- 
dressing N fertilizer for the winter wheat and summer maize seasons was 
1:1. The wheat was sown in early October, and the maize was inter
planted within the wheat field at the end of May before the wheat 
harvest by manual sowing. For the OPT treatment, 2/3 of the basal N 
fertilizer input was organic fertilizer for both the winter wheat and 
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summer maize seasons, and the remaining 1/3 of the basal N fertilizer 
was urea. The top-dressing N fertilizer used was urea, which was applied 
at the shooting stage. Other inputs of N, such as atmospheric N depo
sition, N from irrigation water, abiotic N fixation, seed N, and incor
porated straw N, also occurred during the experimental period. The 
detailed quantification of N input is presented in Appendix 1.1.

For both the CK and CON treatments, from 2008 to 2014, phosphorus 
(P) and potassium (K) fertilizers were applied only during the wheat 
season at rates of 120 kg P2O5 ha− 1 (triple superphosphate) and 100 kg 
K2O ha− 1 (potassium sulfate), respectively, during the maize season. In 
addition to the same amount of P and K input from chemical fertilizer as 
that in the CK and CON treatments, 24–77 kg P2O5 ha− 1 and 79–196 kg 
K2O ha− 1 in the wheat season and 60–65 kg P2O5 ha− 1 and 153–178 kg 
K2O ha− 1 in the maize season were from organic fertilizer input. From 
2015–2020, the P fertilization inputs in the CK and CON treatments 
were changed to 140 kg P2O5 ha− 1 (wheat season) and 100 kg P2O5 ha− 1 

(maize season), respectively; for the OPT treatment, in addition to the 
same amount of chemical P input as that in the CK and CON treatments, 
49–64 and 53–68 kg P2O5 ha− 1 additional organic fertilizer were applied 
during the wheat and maize seasons, respectively. The K fertilization 
rates for the wheat season and summer season were the same, i.e., 60 kg 
K2O ha− 1 from chemical fertilizer for the CK, CON and OPT treatments, 
and in the OPT treatment, organic fertilizer additionally supplied 
125–183 kg K2O ha− 1. All these P and K fertilizers were applied as basal 
fertilizers. Pesticides and herbicides were sprayed to control disease and 
weeds. The detailed farming information is listed in Table S1.

2.2. Measurement of N losses

N leaching and NH3 volatilization were monitored from 2017 to 
2020, and N2O emissions were monitored from 2011 to 2016. The actual 
monitored average annual/seasonal values were considered the average 
for the 12-year experimental period. For N leaching, field N leachate was 
collected after each irrigation and rainfall event and every 10 days if 
there was no irrigation or rainfall; ceramic suction cups were used to 
collect leachate and determine the TN content; and the leachate volume 
was quantified via water tensiometers (Fan et al., 2014; Moreno et al., 
1996). NH3 volatilization was measured daily via the continuous airflow 
enclosure method within the 1st week after fertilization and once every 
two days in the 2nd week (Kissel et al., 1977). For N2O emission, the 
closed chamber method was adopted (Hutchinson and Mosier, 1981; 
Yan et al., 2015): gas fluxes (N2O) were collected every day for 10 days 
after fertilization and irrigation/heavy rainfall, twice a week during the 
nonfertilization/irrigation/precipitation period from March to 
November, and once a week from December 15 to March 15 
(nongrowing season). The detailed farming practices, as well as the 
measurements and calculations of N leaching, NH3 volatilization and 
N2O + NO + N2 emissions, are listed in Appendixes 1.2.

2.3. Auxiliary measurements

Daily precipitation and temperature data were obtained from an AR5 
automated meteorological station (Xinyuanshijie Technology Co. Ltd., 
Beijing, China) located 100 m from the experimental plots. The irriga
tion water quantity during each event was recorded. For irrigation water 
and precipitation water, the TN content was analyzed via potassium 
persulfate digestion and ultraviolet spectrophotometry.

Crop yield was measured during the harvest stage from a 2.5×3 m 
area for wheat and a 3×3 m area for maize in each replicated plot. The 
quantity of N in the grains and straw was determined via a CN analyzer 
(Thermo Flash EA 1112 Flash 2000, USA).

The soil was sampled (at intervals of 20 cm for the 0–100 cm profile, 
3 samples per plot) every year after crop harvest every year. Soil inor
ganic N (i.e., NH4

+ and NO3
- ) was extracted from fresh soil with a 1 M KCl 

solution (soil: solution=1:5) and analyzed via a continuous flow 
analyzer (AA3, SEAL, Inc., Germany). The air-dried soil was ground and 

oven-dried to determine the TN content via a CN analyzer (Thermo Flash 
EA 1112 Flash 2000, USA).

The TN stock was calculated by the following equation: 

TN stock
(
kg N ha− 1)

=
∑5

i− 1
ρi × 0.2 × 10000 × ci (1) 

where ρi is the soil bulk density of the ith soil layer (g cm− 3); ci is the TN 
content of the ith soil layer (g kg− 1); and i=1, 2, 3, 4, and 5 represent the 
0–20, 20–40, 40–60, 60–80, and 80–100 cm soil layers, respectively.

2.4. N use efficiency, N balance and the contributions of different sources 
of N input to N output

In the present study, four N use efficiency indicators were calculated: 
partial factor productivity (PFP, kg grain kg− 1 Nfert), apparent N use 
efficiency (ANUE, %), recovery efficiency (REN, %) and N utilization 
efficiency (NUE, %). We considered two scenarios for the calculation of 
N efficiency, i.e., the change in the soil N stock was considered or not 
considered during the experimental period.

1) Scenario I: the change in the soil N stock was not considered. 
The PFP (kg grain kg− 1 Nfert) was defined as the ratio of crop yield 

per unit of N applied (Kuosmanen, 2014): 

PFP = Yg
/
Nfert (2) 

where Yg is the grain yield (kg ha− 1) and Nfert is the N fertilizer rate 
(kg N ha− 1). 

The ANUE (%) was defined as the ratio of grain N harvested per 
unit of N fertilizer applied (Congreves et al., 2021): 

ANUE =
Ng

Nfert
× 100% (3) 

where Ng is the N quantity in the wheat or maize grain harvested (kg 
N ha− 1). 

The REN (%) was defined as the difference in grain N harvested 
between plots with and without N fertilization divided by the N 
fertilizer rate (Thilakarathna et al., 2020): 

REN =
(Ng − N0)

Nfert
× 100% (4) 

where N0 is the N quantity in wheat/maize grain of the CK treatment 
(kg N ha− 1). 

For NUE, there are 2 types of indicators based on differential total 
N inputs, i.e., NUT1E and NUT2E. NUT1E (%) was defined as the ratio 
of grain N harvested to NT1 input (Lassaletta et al., 2014a): 

NUT1E =
Ng

NT1
× 100% (5) 

where NT1 includes chemical N fertilizer, manure N, nonsymbiotic N 
fixation and atmospheric deposition N. 

NUT2E was defined as the ratio of grain N harvested to NT2 input 
(Quan et al., 2021): 

NUT2E =
Ng

NT2
× 100% (6) 

where NT2 includes NT1, straw incorporated N, irrigation N and seed 
N inputs.

2) Scenario II: the change in the soil N stock was considered.

As the soil N stock changed as the experiment proceeded, especially 
for the long-term experiment, we also calculated the N use indicators 
under scenario II considering the change in the soil N stock during the 
experimental period.
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The calculation of PFP was changed to the following equation: 

PFP = Yg
/(

Nfert − Ns− f
)

(7) 

where Ns-f is the change in the soil N stock due to N fertilizer input (kg N 
ha− 1) during the 12-year experimental period. We assumed that the 
proportion of the soil N stock change due to N fertilizer input to the total 
soil N stock change was equal to the proportion of N fertilizer input to 
the total N input; then, Ns-f was calculated by the following equation: 

Ns− f = Ns ×
Nfert

NT2
(8) 

where Ns is the total change in the soil N stock (kg N ha− 1) within the 12- 
year experimental period.

The calculation of ANUE was changed to the following equation: 

ANUE =
Ng

(Nfert − NS− f)
× 100% (9) 

The calculation of REN was changed to the following equation: 

REN =
Ng − N0

(Nfert − NS− f)
× 100% (10) 

The calculation of NUT1E was changed to the following equation: 

NUT1E =
Ng

(NT1 − NS1)
× 100% (11) 

where NS1 is the total change in the soil N stock (kg N ha− 1) due to NT1 
within the 12-year experimental period. NS1 was calculated by the 
following equation: 

NS1 = NS − Ns ×
NT2 − NT1

NT2
(12) 

Similarly, the calculation of NUT2E was changed to the following 
equation: 

NUT2E =
Ng

(NT2 − Ns)
× 100% (13) 

The N surplus was calculated by the following equation: 

Nsurplus =
∑

Ninput −
∑

Noutput (14) 

where Ninput includes chemical N fertilizer, manure N, nonsymbiotic N 
fixation, atmospheric N deposition, straw incorporated N, irrigation N 
and seed N. Noutput includes grain N, straw removal N, nitrification and 
denitrification (N2O + NO + N2), N leaching and NH3 volatilization. 
Unknown N loss was defined as the difference between the N surplus and 
changes in the soil TN stock. The detailed quantifications of Ninput and 
Noutput are listed in Appendixes 1.1 and 1.2.

We also quantified the contributions of different sources of N input to 
N output; for that purpose, we divided all N inputs into N fertilizer (F, 
including chemical N fertilizer and manure N) and non-N fertilizer (NF, 
including straw N and other N (atmospheric-deposited N, nonsymbiotic 
N fixation, irrigation N and seed N)). We assumed that the use effi
ciencies of F and NF were the same. The detailed calculation process was 
shown in Appendix 1.3.

2.5. Statistical analysis

All the data are presented as the mean ± standard error (n=4). SPSS 
22.0 (SPSS, Inc., Chicago, IL, USA) was used to conduct all the statistical 
analyses. One-way analysis of variance (ANOVA) at a 0.05 level of 
probability followed by the least significant difference (LSD) test was 
used to test the significance of differences in crop yield; PFP, ANUE, REN, 
NUT1E, and NUT2E; N leaching; cumulative gas emission; etc., in the CK, 
OPT, and CON treatments. The graphs were prepared using Origin 2018 
(Origin Lab Corporation, Northampton, MA, USA).

3. Results

3.1. Crop production

Over the 12-year experimental period, the grain yields of the CON 
and OPT treatments were not significantly different for either wheat or 
maize production (Fig. 1). The wheat grain yield was stable over the 
years, but the maize grain yield increased as the experiment progressed: 
the maize yields in the CON and OPT treatments increased from 7.2 ±
0.3 and 7.2 ± 0.2 Mg ha− 1 in 2008 to 9.7 ± 0.2 and 10.3 ± 0.7 Mg ha− 1, 
respectively in 2020. In 2020, compared with those in CON and OPT, the 
wheat and maize yields in CK were 42.5 % and 45.7 % lower, respec
tively (p < 0.05). The lowest wheat and maize yields in CK were 
recorded in 2013 (6.6 ± 0.28 Mg ha− 1), which were 59.5 % and 56.2 % 
lower than those in CON and OPT, respectively (p < 0.05).

3.2. N balance and losses

The total N input during the 12-year experimental period was 9110 
± 10.7 kg N ha− 1 in CON, whereas that in OPT was 6915 ± 9.4 kg N 
ha− 1, in which the fertilizer N input in CN was 7200 kg N ha− 1 and that 
in OPT was 41.4 % lower (Table S2). In the total N input, CON received 
635 kg N ha− 1 from wheat straw, and OPT incorporated both wheat and 
maize straw into the cropland and 1555 kg straw N ha− 1 was returned. 
Because of the much lower yields of wheat and maize straw and lower 
straw N contents than those of CON and OPT, CK incorporated only 
448 kg N ha− 1 during the 12-year experimental period (Fig. 2; 
Table S2). Other N inputs were the same for the 3 treatments, with 
deposition and irrigation water N inputs of 46.8 and 30.5–41.8 kg N 
ha− 1 yr− 1, respectively (Fig. 2; Table S2).

During the 12-year experimental period, the N losses in CON were 
308 ± 4.7 (N2O + NO + N2), 1105 ± 5.7 (N leaching) and 1873 ±
13.8 kg N ha− 1 (NH3 volatilization) (Table S2), accounting for 9.4 %, 
33.6 % and 57.0 %, respectively, of the total N loss. The corresponding 
losses via N2O + NO + N2, N leaching and NH3 volatilization and total N 
losses in OPT were 28.6 %, 47.1 %, 11.4 % and 25.0 % lower (p < 0.05) 
than those in CON. The season N losses (including leaching, NH3 vola
tilization and N2O + NO + N2) in CON were 104 ±1.0 kg N ha− 1 wheat 
season− 1 (Fig. S1a) and 170 ±0.5 kg N ha− 1 maize season− 1 (Fig. S1b), 
approximately 14.2 % ±2.2 % and 48.5 % ±0.7 % higher (p < 0.05), 
respectively, than those in the OPT treatment. The total crop grain N 
harvested in CON was 2811 ± 22.8 kg N ha− 1, which was 5.0 % higher 
(p < 0.05) than that in OPT (Table S2). The N surpluses of CON (2004 ±
37 kg N ha− 1) and OPT (1773 ± 26 kg N ha− 1) treatments did not 
significantly differ during the 12-year experimental period (Table S2).

3.3. Soil N stock and changes

Compared with that in the initial soil in 2008, the soil TN stock in the 
0–60 cm soil layer in 2020 increased by 16.1 % ±3.9 % (CON), 26.3 % 
±7.9 % (OPT) and 12.9 % ±2.0 % (CK) (Fig. S2a-c). Similarly, the soil N 
stock in the 20–40 cm layer in OPT increased by 41.2 % ±11.1 %, 
whereas that in CON increased by only 12.6 ±7.1 %. In the 60–100 cm 
layer, changes in the soil N stock were negligible, i.e., − 1.1 % ±5.5 % 
(CON), 1.7 % ±6.9 % (OPT) and − 3.9 % ±3.4 % (CK). Compared to 
that in 2008, the soil N stock at the whole 0–100 cm depth increased by 
972 ±285 (CON), 1671 ±594 (OPT) and 705 ±173 kg N ha− 1 (CK) in 
2020 (Table S2). The corresponding annual soil N sequestration rates for 
the 0–60 cm layer were 84.0 ±20.8 (CON), 137 ±42.2 (OPT) and 66.4 
±9.7 kg N ha− 1 yr− 1 (CK), and for the 0–100 cm layer, the values were 
81.0 ±23.7 (CON), 139 ±49.5 (OPT) and 58.8 ±14.5 kg N ha− 1 yr− 1 

(CK), respectively.

3.4. N use efficiencies

Under scenario I, the NUE indicators of OPT were significantly 
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greater than those of CON (p < 0.05; Fig. 3). During the entire experi
mental period, the average PFP of OPT was 52.6 (wheat), 46.7 (maize) 
and 46.1 kg grain kg− 1 Nfert (annual), which was significantly greater 
than that of CON (23.9 (wheat), 30.1 (maize), and 27.0 kg grain kg− 1 

Nfert (annual) (Fig. 3a)). The average ANUE of CON was 39.3 % (wheat), 
38.8 % (maize) and 39.1 % (annual), respectively (p < 0.05), signifi
cantly lower than those of OPT, i.e., 82.5 % (wheat), 57.7 % (maize) and 
63.4 % (annual) (Fig. 3b). Similarly, the NUT1E values in CON were 
36.2 % (wheat), 34.6 % (maize) and 35.4 % (annual), all significantly 
lower than those of OPT (67.8 % (wheat), 48.4 % (maize) and 54.0 % 
(annual) (Fig. 3d)). The annual REN and NUT2E in CON were 21.8 % and 
30.9 %, respectively, also significantly lower than those in OPT (34.0 % 
and 38.7 %, respectively) (Fig. 3c; Fig. S3a-b).

Under scenario II, which considered the change in the soil N stock, 
the annual NUE was recalculated (not for seasonal efficiencies, as the 
change in the seasonal soil N stock could not be separately defined). The 
annual PFP, ANUE, NUT1E, REN and NUT2E of CON were 30.3 kg grain 
kg− 1 Nfert, 43.8 %, 39.8 %, 24.5 % and 34.7 %, respectively, which were 
significantly lower than those of OPT, i.e., 63.2 kg grain kg− 1 Nfert, 
86.8 %, 73.9 %, 46.6 % and 53.0 %, respectively (Fig. 3 and Fig. S3c-d).

The fertilizer N input in OPT was 41.4 % lower than that in CON, and 
contribution of fertilizer N to crop grain N harvested and to N losses of 
OPT was lower by 8.5 % and 27.9 %, respectively, and the change in the 
soil N stock was 39.5 % (0–100 cm) greater than that in CON (Table S2, 
Fig. 4). Compared with that in CON, the straw N input in OPT was 145 % 
greater, and the straw N contribution to crop grain N harvested, N losses 

and soil N stock changes were 207 %, 143 % and 453 % greater, 
respectively (Fig. 4) (assuming that the use efficiencies of N fertilizer (F) 
and non-N fertilizer (NF) are the same).

4. Discussion

4.1. Maintaining long-term high crop yields and improving N efficiency in 
the intensively farmed regions

Our experimental results highlighted that the integrated adoption of 
optimized farming practices is a promising strategy for long-term and 
high crop production in China, where a population of 1.4 billion must be 
fed (Bolinder et al., 2020; Zhang et al., 2014). In our study, STFF and 
water-saving irrigation in the OPT treatment decreased the N fertilizer 
input by 41.4 % and the irrigation water input by 27.1 % (Table S1), 
decreased the total N leaching by 47.1 % (Table S2; Fig. S1), decreased 
the total N losses by 25 % (Table S2; Fig. S1), and the associated costs 
were also reduced, while the crop yield was similar to that in the CON 
treatment. These results were comparable to those of other similar 
studies that adopted optimum practices such as ISSM (integrated 
soil-crop system management; Chen et al., 2014; Cui et al., 2018) and 
SSNB (steady-state N balance; Yin et al., 2021), which reduced N fer
tilizer use by 11–28 % while increasing yields by 6–7 % and decreasing 
reactive N losses by 22.9 %–34.9 %, and the N leaching by 14.3 %– 
81.8 %. The PFP of wheat (52.6 kg grain kg− 1 Nfert) and maize (46.7 kg 
grain kg− 1 Nfert) under OPT was comparable to that of 45–72 kg grain 

Fig. 1. Grain yield (Mg ha− 1) of seasonal wheat (a), seasonal maize (b), annual (wheat+ maize, c) and the 12-year average (d). The data shown are the means ±
standard errors (n = 4). Different letters for the same crop indicate significant differences at P < 0.05 among the three treatments.
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kg− 1 Nfert in North America and the EU (Ladha et al., 2005; 
López-Bellido et al., 2005); the ANUE in OPT of 82.5 % (wheat) and 
57.7 % (maize) was also similar to or greater than that in the EU 
(approx. 60 %; Brentrup and Palliere, 2010). The NUT1E, i.e., 67.9 % 
(wheat) and 48.4 % (maize), in OPT were also at similar levels in the EU 
and USA (Y/F=50 %–75 %; Lassaletta et al., 2014a).

In addition to the fertilizer optimization (reduction) performed in the 
above studies, our study also included integrated organic materials with 
chemical fertilization, water-saving irrigation and deep tillage. For 
organic material recycling (animal manure and straw), large amounts of 
macronutrients, such as P and K (129 kg P2O5 ha− 1 yr− 1 and 398 kg K2O 
ha− 1 yr− 1, Table S1), and micronutrients, such as Fe, Zn, Mg, Ca and 
others (Bai et al., 2015; Lal, 2013), are returned to farmland soil, 
increasing the assimilation of nitrate N by microorganisms (Cheng et al., 
2017; Elrys et al., 2022; Hu et al., 2018; Xia et al., 2018). The physical, 
chemical and biological properties of the soil were also greatly improved 
(SOC content in OPT increased by 26.7 % in 0–20 cm soil layer 
compared to CON treatment, unpublished data). The unknown N losses 
in the CON treatment (1032 kg N ha− 1) were 10-fold greater than those 
in the OPT treatment (102 kg N ha− 1), and much of these unknown N 
losses might have leached below the 100 cm soil layer due to the high 
degree of water leaching (Table S2; Meng et al., 2021; Stone et al., 
2014). The above analysis indicated that the integration of these 
appropriate intensive farming measures helped to effectively maintain 
the high crop yields after the experiment was established and main
tained a high NUE. Our 12-year experimental results supported our first 
hypothesis, that high-yield production can be sustainably ensured by 
adopting appropriate farming measures via a holistic approach. This 
may provide beneficial experiences for many developing countries, 
where an increase in agronomic productivity is highly important 
(George, 2014; Lassaletta et al., 2023) and where sustainable agricul
tural intensification is needed (Bouwman et al., 2017).

Notably, in our study, NH3 volatilization was reduced by only 11.4 % 

under OPT, much lower than the mitigation for N leaching (47.1 %), 
indicating that our second hypothesis was only partially supported. 
First, the soil in the study was alkaline, and NH3 volatilization occurred 
easily. On the other hand, current farming measures do not effectively 
mitigate the NH3 volatilization. Other techniques, such as urease in
hibitors, might be deployed to further reduce gaseous N losses 
(Butterbach-Bahl et al., 2013; Xia et al., 2017a). Flood irrigation alone in 
our OPT treatment did not effectively save water resources, and N 
leaching could be further reduced by refining irrigation methods, such 
as drip irrigation or fertigation (Zhang et al., 2019, 2021). Because of 
concerns about food security in China, the annual wheat-maize double 
cropping system has been continuously implemented in the region since 
the 1990s (Zhang et al., 2017). However, this type of continuous and 
long-term cereal cropping might increase the incidence of diseases and 
pathogens (Jauri et al., 2018; Zhou et al., 2023), and rotation with 
noncereal crops may promote overall farming health and crop yield, 
which deserves further investigation in the studied region.

4.2. Soil N stock changes should be considered in the precise 
quantification of fertilizer N efficiency

We observed a rapid decrease in crop yield in the CK treatment as the 
N input decreased from 600 kg N ha− 1 yr− 1 pre-experiment to no N 
input at the initiation of the experiment; afterward, the crop yield 
gradually increased in the later experimental period (Fig. 1), which was 
different from the findings of other studies such as Cai et al. (2019) and 
Crystal-Ornelas et al. (2021). This occurred because in our study, 
although no fertilizer N was applied, both wheat and maize straw were 
incorporated in CK. Besides, high dry and wet N deposition in the 
studied region (Li, 2019; Liu et al., 2013), in addition to the straw N 
returned to the soil, did exhibit a remarkable effect on crop production 
and soil N stock under the long-term experimental context. The soil N 
stock also increased in CON and OPT treatments (Fig. S2), and the 

Fig. 2. N input, output, REN, NUT2E (under Scenario II) and soil N stock changes in the experimental treatments from 2008 to 2020 (kg N ha− 1).
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traditional N use efficiency calculation method underestimated the REN 
and NUT2E (Fig. S3a vs. Fig. S3c, Fig. S3b vs. Fig. S3d) under scenario I, 
in which the soil N stock change was not considered. If soil N stock 
changes were accounted for, the REN and NUT2E increased by 2.7 and 
3.8 percentage points in CON, and by 12.6 and 14.3 percentage points in 
OPT, respectively.

We also calculated the soil N stock changes (0–100 cm), REN and 
NUT2E (under two scenarios) for the 4 stages of 2008–2012, 2008–2016, 
2008–2018 and 2008–2020 (Fig. S4) to compare the impacts of the 
short-term (4-year and 8-year) and long-term (10-year and 12-year) 
experimental periods on the soil N stock, REN and NUT2E. There were 
large differences between REN and NUT2E in the 2008–2012 (4-year) 
and 2008–2020 stages (12-year) in CON (41.6 % vs. 24.5 % for REN, 
82.6 % vs. 34.6 % for NUT2E) and OPT (25.2 % vs. 46.6 % for REN, 
40.6 % vs. 53.0 % for NUT2E) treatments. This occurred because the 
excessive fertilizer N in CON remained within the soil in the short-term 
period but was lost by leaching or moved to the deeper layer (below 
100 cm) by flooding irrigation in the long-term period (Meng et al., 
2021; Poffenbarger et al., 2018), and these high N losses led to lower 
REN and NUT2E values. However, owing to the integration of optimized 
farming practices in OPT, the soil N stock changes increased gradually 

during the four short-term stages, and the REN and NUT2E thereby 
increased. These results confirmed that considering soil N stock changes 
is important for an accurate assessment of N use efficiency (Vonk et al., 
2022; Quan et al., 2021).

4.3. N immobilization across the whole soil profile

We found that the soil N stock mostly increased at 0–60 cm (or more 
specifically, 20–40 cm) soil depth in OPT, and the increase of soil N 
stock below 60 cm was negligible (Fig. S2). Annual soil N increase 
(0–60 cm) was at 137 kg N ha− 1 for OPT, much higher than those of 
CON and CK. These findings have seldom been reported, as soil N is not 
sensitive enough to be precisely examined within a 1- or 2- year 
experimental period (Quan et al., 2021; van Grinsven et al., 2022). Our 
analysis revealed that the contribution of straw N to the change in the 
soil N stock in the OPT treatment was 5.5 times greater than that in the 
CON treatment over the 12-year experimental period, whereas the straw 
N input was only 2.5-fold that in the CON treatment (Fig. 4a; Fig. 4f). If 
we considered the use efficiency of NF to be 10.0 % (mainly straw N; 
Fig. S5; Ding et al., 2016; Haynes, 1997), compared with the same use 
efficiency for fertilizer and non-N fertilizer (Fig. 4), the contribution of N 

Fig. 3. The 12-year average partial factor productivity (PFP, a) for N fertilizer (kg grain kg− 1 Nfert), apparent N use efficiency (ANUE, b), N recovery rate (REN,c) and 
nitrogen use efficiency (NUT1E, d) of the three treatments. In Scenario I, the change in soil N stock was not considered; in Scenario II, the change in soil N stock was 
considered. The data shown are the mean ± standard error (n = 4). * indicate significant differences at p < 0.05 between CON and OPT treatments.
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fertilizer to all types of N output did not change, but the contribution of 
soil N increased. Therefore, the soil N contribution reflects the residual 
effect of fertilizer and non-N fertilizer (van Grinsven et al., 2022; Yan 
et al., 2014) and should be considered in the long-term field crop 
production.

Organic matter provides carbon to microorganisms and the input 
mineral N is efficiently assimilated into the soil organic N pool 
(Crystal-Ornelas et al., 2021; Elrys et al., 2022; Xia et al., 2017b). Deeper 
tillage (~25 cm) under OPT promoted the humification of organic ma
terials in the 20–40 cm soil layer and prevented the decomposition of 
straw in the surface soil (Wu et al., 2022). In addition, water-saving 
irrigation in OPT also alleviated the downward N movement (espe
cially chemical fertilizer N) into the deeper soil profile (> 100 cm) and 
more N was retained in the root zone layer (0–60 cm). These findings 
provide important insights that were difficult to obtain in short-term 
experiments; i.e., soil fertility or N stock are crucial factors for sustain
able intensification (Foley et al., 2005, 2011; Yan et al., 2020), and the 
soil organic N can be easily decomposed and transformed to the 

inorganic N (NH4
+-N and NO3

- -N), which is highly available for subse
quent crops (Cheng et al., 2017), but it can also have a high risk of 
leaching if irrigation is high (Gu et al., 2015b; Zhang et al., 2021).

We used the current experimental study data as the calculation basis 
to estimate the impacts of disseminating these optimized farming mea
sures across the entire NCP. These techniques dissemination can directly 
save 3.8 million tons of fertilizer N and 22.0 billion m3 of irrigation 
water, and approximately 1.1 million tons of fertilizer N can be se
questrated in soil N. In total, 4.9 million tons of fertilizer N saved is 
equivalent to 50 % of the fertilizer N input in the EU in 2020 (FAOSTAT, 
2021), and 1.1 million tons of N losses were also avoided, equivalent to a 
similar amount of fertilizer N usage in the UK in 2020 (FAOSTAT, 2021). 
The dissemination of integrated optimum farming practices is highly 
important for other cereal production regions in China and other 
countries.

There are several limitations in our study. We measured the N losses 
for only 4–5 years rather than for the entire experimental period, which 
may introduce uncertainty. As the measured N losses during the 

Fig. 4. Different sources of N input in the CON and OPT treatments (a); the contributions of different sources of N input to crop grain N harvested (b), to straw N 
harvested (c), to N losses (d), to unknown N losses (e), and to soil N stock changes (f) in the CON and OPT treatments during the 12-year experimental period.
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monitoring period (Fig. S6) were stable, we are convinced that these 
measured N losses represent the actual N losses over the 12 years. In 
addition, the use of the N2O/NO ratio and N2/N2O ratio may also lead to 
over- or underestimation of NO and N2 emissions (Balaine et al., 2016; 
Butterbach-Bahl et al., 2013; Wang et al., 2013; Yan et al., 2013). The 
short distance between the no N fertilizer treatment (CK) and the N 
fertilization treatments might also overestimate the NH3 volatilization 
(Pacholski et al., 2006) and the crop canopy uptake of volatilized NH3 
from the CK treatment (Table S3; Sommer et al., 1997; Yang, 2021). The 
targeted maize yield at the start of the experiment was set as 7.5 Mg ha− 1 

season− 1 with the N demand of 180 kg N ha− 1 season− 1 (Cui et al., 
2008), and the actual N fertilizer input was 191 kg N ha− 1 in the maize 
season, which was also higher than the 161 kg N ha− 1 season− 1 N input 
in the wheat season (Table S1). This limited the further increase in 
wheat yield and should be refined in the future. Integration of organic 
with chemical fertilization, such as the operation in OPT, in the whole 
cereal cropping region, might be difficult. However, in the intensive 
animal production regions such as Shandong, Hebei and Henan, the 
disposal of animal waste has been a major challenge, as there is not 
always enough vegetable or fruit farmland near the animal farms. In this 
case, organic fertilization in cereal production can be a good alternative 
option for organic resource recycling and the promotion of green agri
culture (Ashraf et al., 2023; Beillouin et al., 2023; Gross and Glaser, 
2021).

5. Conclusions

Our study is based on the first comprehensive field experiment in 
which multiple optimized farming measures were integrated and 
examined in the typical intensive farming region of northern China. This 
study demonstrated that the integration of optimized farming practices 
may achieve sustainable high-yield cereal crop production and signifi
cantly mitigate N losses, especially N leaching. The potential yield 
decreased due to chemical fertilizer inputs reduction was avoided by 
organic material recycling, and N was effectively sequestered in the 
root-zone soil (0–60 cm) due to water-saving irrigation and increased 
carbon input. The NUEs under the optimized farming techniques were 
improved to the developed country level. Long-term field experiments 
are vital for the robust assessment of NUEs under substantial changes in 
the soil N stock. Urease inhibition, fertigation, rotation, and other 
appropriate technologies may also be included in the experimental 
studies to further optimize farming practices in China and beyond.
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