001     1033913
005     20250310131247.0
024 7 _ |a 10.1109/CVPRW63382.2024.00012
|2 doi
024 7 _ |a 10.34734/FZJ-2024-06751
|2 datacite_doi
024 7 _ |a WOS:001327781700008
|2 WOS
037 _ _ |a FZJ-2024-06751
100 1 _ |a Kazimi, Bashir
|0 P:(DE-Juel1)196697
|b 0
111 2 _ |a 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
|c Seattle
|d 2024-06-17 - 2024-06-18
|w WA
245 _ _ |a Self-Supervised Learning with Generative Adversarial Networks for Electron Microscopy
260 _ _ |c 2024
|b IEEE
300 _ _ |a 71-81
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1733987837_21022
|2 PUB:(DE-HGF)
520 _ _ |a In this work, we explore the potential of self-supervised learning with Generative Adversarial Networks (GANs) for electron microscopy datasets. We show how self-supervised pretraining facilitates efficient fine-tuning for a spectrum of downstream tasks, including semantic segmentation, denoising, noise & background removal, and super-resolution. Experimentation with varying model complexities and receptive field sizes reveals the remarkable phenomenon that fine-tuned models of lower complexity consistently outperform more complex models with random weight initialization. We demonstrate the versatility of self-supervised pretraining across various downstream tasks in the context of electron microscopy, allowing faster convergence and better performance. We conclude that self-supervised pretraining serves as a powerful catalyst, being especially advantageous when limited annotated data are available and efficient scaling of computational cost is important.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Ruzaeva, Karina
|0 P:(DE-Juel1)180323
|b 1
|u fzj
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 2
|e Corresponding author
773 _ _ |a 10.1109/CVPRW63382.2024.00012
856 4 _ |u https://ieeexplore.ieee.org/document/10678518/authors#authors
856 4 _ |u https://juser.fz-juelich.de/record/1033913/files/2402.18286v2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1033913
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)196697
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180323
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21