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The spatial structure is conventionally classified as either regular, when the patches of biomass are of similar
size and are spaced in similar intervals, or irregular. The formation of regular patterns is driven by scale-
dependent feedbacks. Models incorporating those feedbacks generate highly regular patterns, while natural
patterns appear less regular. This calls for a more nuanced quantification beyond a binary classification. Here,
we propose measuring the degree of regularity by the maximum of a pattern’s spectral density, based on the
observation that the density of highly regular patterns consists of a narrow and high peak, while the density of
highly irregular patterns consists of a low and wide lobe. We rescale the density to make the measure invariant
with respect to the characteristic length-scale of a pattern, facilitating the comparison of patterns observed or
modelled under different conditions. We demonstrate our method in a metastudy determining the regularity
of natural and model-generated patterns depicted in previous studies. We find that natural patterns have an
intermediate degree of regularity, resembling random surfaces generated by stochastic processes. We find that
conventional deterministic models do not reproduce the intermediate regularity of natural patterns, as they
generate patterns which are much more regular and similar to periodic surfaces. We call for appreciating the

stochasticity of natural patterns in systems with scale-dependent feedbacks.

1. Introduction

A wide range of ecosystems exhibit spatial patterns where the
biomass is concentrated in patches (Rietkerk and van de Koppel, 2008).
Such patterns have received considerable attention, as they can im-
prove ecosystem productivity and resilience under increasing envi-
ronmental pressure (Rietkerk et al., 2021). Two classes of patterns
are distinguished, regular patterns, where the size of patches and the
distance between patches has a characteristic length scale, and irregular
patterns, where this is not the case (Klausmeier, 1999; von Hardenberg
et al.,, 2010; Kéfi et al., 2010). Regular patterns in particular, yield
fascinating images when captured from air and space (Fig. 1a,b). They
include a.o. patterns of vegetation in drylands (Lejeune et al., 2004),
fairy rings in savannahs (Bonachela et al., 2015), patterns in mussel
beds (van de Koppel et al., 2005), in freshwater marshes (van de Koppel
and Crain, 2006), in seagrass meadows (van der Heide et al., 2010),
in stream vegetation (Cornacchia et al., 2018), and algae biofilms in
intertidal areas (Weerman et al., 2010; van de Vijsel et al., 2020).
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Ecosystems facilitate human life but are under increasing pressure
by local and global changes, including those of land use and climate.
Spatial patterning has been suggested as an indicator of ecosystem
health, in particular as a sign of imminent critical transitions, such as
sudden desertification (Kéfi et al., 2007; Scheffer et al., 2009; Weerman
et al., 2012; Kefi et al.,, 2014; Bonachela et al., 2015). However,
patterning can also increase the ecosystem productivity and resilience
against environmental pressure (Rietkerk et al., 2021). The relation
between patterns and ecosystem health is complex: alternative stable
states can exist under the same environmental conditions (Bastiaansen
et al., 2018), or even coexist in different parts of a pattern (Zelnik
and Meron, 2018), responses to environmental change can be grad-
ual or sudden (Bel et al., 2012). Sustainable ecosystem management
thus requires a thorough understanding of a pattern’s structure and
pattern-forming processes.
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The formation of regular patterns in resource limited ecosystems
has been attributed to self-organization driven by short range facil-
itation and long range competition between the pattern-forming or-
ganisms (Rietkerk and van de Koppel, 2008; Borgogno et al., 2009;
Meron, 2015). Regular patterns can be generated with mathematical
models (Fig. 1c,d) which either phenomenologically account for the
interaction (Thiery et al., 1995; Dunkerley, 1997; Lefever and Lejeune,
1997; Lejeune et al., 1999), or explicitly mimic bio-physical processes
(Klausmeier, 1999; Hille Ris Lambers et al., 2001; Rietkerk et al., 2002;
van de Koppel et al.,, 2005; van de Koppel and Crain, 2006; Gilad
et al.,, 2007; Siteur et al., 2014b; Bonachela et al., 2015). Regular
environmental spatial patterns are conceptually understood to be pe-
riodic, which has been corroborated by mathematical models which
generate highly regular patterns (Meron, 2015; Fernandez-Oto et al.,
2019; Caviedes-Voulliéme and Hinz, 2020; Bera et al., 2021; Clerc
et al., 2021; Inderjit et al., 2021; Rietkerk et al., 2021; Kabir and Gani,
2022; Siteur et al., 2023; Bennett et al., 2023). The terms regular and
periodic are rarely differentiated in the literature on spatial patterns.
For clarity, we distinguish periodic and regular patterns based on the
definition of Késtner et al. (2024): A periodic pattern is identical to
itself when shifted in space in intervals corresponding to its character-
istic wavelength 4, along one of its axes of symmetry, and therefore can
be cut into identical tiles. A periodic pattern is consequently globally
correlated, i.e. its autocorrelation function oscillates with constant
amplitude at the characteristic wavelength. Conversely, the spectral
density of a periodic pattern consists of narrow and high peaks at their
characteristic wavenumber. For patterns with a finite spatial extent,
the height of the peaks is proportional to the area of the pattern. The
periodic spatial structure is retained and evident in the spectrum and
autocorrelation, even when it is randomly perturbed, e.g. by adding
noise or by locally varying the patches. A regular pattern appears
similar, but not identical, to itself when shifted in space in intervals
corresponding to its characteristic wavelength. When cut into tiles with
side lengths corresponding to the characteristic wavelength, neighbour-
ing tiles are similar, but the similarity between two tiles decreases
the further they are separated. The pattern consequently decorrelates
with increasing distance, i.e. the autocorrelation function has maxima
at multiples of the characteristic wavelength, but the height of the
maxima decreases with increasing lag distance. Conversely, the spectral
density is lobed, reaching its maximum at its characteristic wavenum-
ber. The height and the width of the lobe depend on the regularity
of the pattern, but not on its spatial extent. A periodic pattern can be
perturbed locally by varying patches or superimposing noise, i.e. by
adding non-periodic components. However, the spatial structure of the
periodic components remains distinct in the autocorrelation function
and the spectral density.

Natural regular patterns exhibit a considerable degree of random
variation: the distance between patches as well as the size of patches
vary, and the fringes of patches are frayed (Fig. 1a,b). This variation
is not reproduced in patterns generated by conventional mathematical
methods (Fig. 1c,d). Recently, Kastner et al. (2024) revisited classifi-
cations of environmental spatial patterns. Using a large global dataset,
they showed that natural regular patterns are in general not periodic,
and suggested they have an intermediate degree of regularity. This find-
ing reveals the need for a method to quantify the degree of regularity
beyond the binary classification as periodic or not and for a thorough
investigation of the differences between model-generated and natural
patterns.

There are various methods for analysing point patterns consisting
of isolated individuals such as trees, or continuous patterns consisting
of patchy vegetation such as shrubs, c.f. Dale (2000). Regular patterns
typically consist of patches and have historically been analysed with
the blocked quadrat variance (Dale, 2000), or with spectral meth-
ods (Renshaw and Ford, 1984). However, so far, only the wavelength,
but not the regularity of environmental spatial patterns has been stud-
ied systematically (Couteron, 2002; Deblauwe et al., 2011), likely,
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because regularity has so far been viewed as a binary property of either
being periodic or not. Here, we recognize the regularity as a continuous
property, which determines where a pattern is in between the extreme
cases of a periodic surface (highest regularity) and patterns without
finite characteristic length scale (lowest regularity). The regularity
measures how similar a pattern is to itself when being shifted in space
by a distance corresponding to its characteristic wavelength, i.e. how
similar directly adjacent tiles are on average. The higher the regularity
(Fig. 2a) the slower the oscillation of the autocorrelation decays, i.e. the
more similar adjacent tiles appear. Periodic and irregular patterns are
thus limit cases of regular patterns, where in the former case, the
oscillation of the autocorrelation does not decay, and in the latter case
the autocorrelation does not oscillate at all.

Several pattern properties related to regularity have been used as
indicators of resilience with respect to environmental pressure. These
include the size distribution of the patches (Kéfi et al., 2011) and
distribution of the patch spacing (Bastiaansen et al., 2020), or defects
in striped patterns, such as termination or branching of stripes (Pinto-
Ramos et al., 2023). However, the patch size, interpatch distance and
defects are unsuitable for measuring the correlation length and hence
the regularity, since they are local properties Kistner et al. (2024).

Here, we propose measuring the regularity generically by the max-
imum of the mode spectral density (Fig. 2b), as it has advantageous
statistical properties compared to the autocorrelation and patch-based
statistics. The spectral density is uniquely related to the autocorrelation
via the Fourier transform. We rescale the spatial dimensions to make
the regularity estimate scale-independent, thus facilitating the pooling
of the regularity of patterns within one group and comparing it against
the regularity of patterns within another group. Our approach is similar
to the method based on the width of the mode of the radial spec-
tral density for measuring the degree of imperfection of labyrinthine
patterns recently proposed by Echeverria-Alar et al. (2023). We then
apply our method in a metastudy of over 60 publications on regular
environmental spatial patterns, where we compare the regularity of the
depicted natural and model-generated patterns.

This paper is structured as follows: First, we introduce a method for
measuring the regularity for spatial patterns (Section 2.4). Second, we
present the meta-analysis of environmental spatial patterns (Section 3).
Lastly, we discuss implications for modelling environmental spatial
patterns 4.

2. Methods

We estimate the degree of regularity from the spectral density of
a pattern. The height of the mode, i.e. the maximum, of the density,
when appropriately scaled, is a quantitative estimate of the degree of
regularity, while the location of the mode is an estimate of the charac-
teristic wavenumber. The spectral density has to be estimated from the
periodogram, as it is not known in the general case. The periodogram
consists of the squared magnitude of a pattern’s frequency components.
The frequency components of environmental spatial patterns (Fig. 1le-f)
are randomly scattered, which indicates that the patterns are random
surfaces generated by stochastic processes (Kastner et al., 2024). The
scatter hinders a direct quantification of the regularity from the pe-
riodogram. To determine the regularity, the spectral density, which
is the expected magnitude of the frequency components, has to be
first estimated by smoothing, i.e. averaging neighbouring periodogram
values or by fitting an appropriate parametric density model. However,
even without smoothing, the regularity of a pattern can be visually
assessed from the periodogram. This is because the spectral energy of
highly regular patterns is concentrated in a narrow frequency range
(Fig. 1g-h), while the spectral energy of less regular patterns is dis-
tributed over a larger frequency range (Fig. 1e-f). The estimated density
is uncertain, and a trade-off between bias and variance has to be
made. For environmental spatial patterns, we decompose the density
in two-dimensional components, as this reduces the bias and facilitates
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Fig. 1. Comparison of typical natural and model generated patterns. Both model generated and natural patterns have a regular spatial structure with a characteristic wavelength.
However, model generated patterns are much more regular, as their spectral energy is concentrated in the characteristic frequency component, while the spectral energy of natural
patterns is distributed over a wider range of frequencies. (a) A striped and (b) a spotted vegetation pattern captured in the Kordofan, Sudan (11°19’49"N 28°21°19"E, 2021 and
11°32°00"N, 27°55’40"E, 2021, Aerial images from Google Maps Maxar Technologies, CNES/Airbus). Their characteristic wavelengths are 4, of 96m and 102 m, respectively. The
striped pattern has been rotated to align with the coordinate axes. .S,. + /4, and S,./A, are the regularity of anisotropic and isotropic patterns, as defined in Section 2.4. p is
p-value of the periodicity test (Késtner et al., 2024). (c) A striped and (d) a spotted pattern generated with the Rietkerk model (Rietkerk et al., 2002). Parameters for the spotted
pattern: rainfall intensity R = 0.75 mm/d, surface water diffusivity e,=100 m?/d. Parameters for the striped pattern: R=1 mm/d, e,=25 m?/d, runoff velocity v,, = 10 m/d. All
simulations in this study were run in a square domain with a side length L = 1000 m and for a duration of 4 -10° days ~ 1100 years. (e-h) Corresponding rotated periodograms,
showing how much of the spatial variance if contributed by each frequency component, c.f. Section 2. The spurious low-frequency components with wavenumbers k < k. have
been suppressed in the periodograms of natural patterns. The coordinate axes, representing the wavenumber k, in the direction perpendicular and k, in the direction parallel to
the stripes, are scaled by the characteristic wavenumber k., the wavenumber at which the spectral density reaches a maximum.
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Fig. 2. Schematic comparison of the autocorrelation R and spectral density .S of a periodic pattern, a regular stochastic pattern and an irregular pattern. (a) The autocorrelation of
periodic patterns and stochastic regular patterns both oscillate at the characteristic wavelength 4,. The oscillation of periodic patterns remains constant, as they remain correlated
over their entire spatial extent, while the oscillation of stochastic patterns decays as the patterns decorrelate with increasing lag distance. The autocorrelation of irregular patterns
decays without oscillating. (b) The spectral densities of both periodic and regular stochastic patterns have a maximum at the characteristic wavenumber k.. For a periodic pattern,
the value of the maximum is proportional to the spatial extent L of the pattern, while the maximum of a regular stochastic pattern is independent of the spatial extent. The
maximum of irregular patterns occurs at the zero wavenumber.

the visual interpretation. Beside estimating the decomposed density,
the estimation of the regularity requires two more steps: First, we
normalize the periodogram similar to a probability density so that the
estimate is independent of the spatial and spectral resolution, i.e. the
pixel size and the spatial extent of the pattern. Second, we rescale the
periodogram so that the regularity estimate is invariant with respect to
the characteristic length scale of the pattern. Below, we first explain the
method for the ideal case of a pattern with infinite spatial and spectral
resolution, and then further explain the method for practical cases of
patterns captured in satellite images with finite spatial resolution and
finite spatial extent.

2.1. Decomposition of the two-dimensional spectral density

We start our analysis with the two-dimensional spectral density S,
of a patterns biomass concentration b per unit area. The spectral density
determines which fraction of the spatial variance ¢, each frequency
component contributes:

2
8,0 = 5 [B[(6(3) - 5) exp (-iE77)]| . (1a)
%
oy = E[(b() - b)*], (1b)

b= E[b®)]. (1c)
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Here, ¥ = [x,y]T is the spatial coordinate and k¥ = [ky. k1T is the
wavenumber. In general, the spatial structure is independent of the
mean biomass b.

We decompose the two-dimensional density into its axial com-
ponents. When analysing anisotropic, i.e. striped, patterns, we first
rotate the coordinate system so that the stripes of the pattern are on
average perpendicular to the primary axis x. Then, we decompose the
density into a component S, perpendicular to the stripes (transect
direction) and a component S, parallel to the stripes by integrating in
the respectively orthogonal direction (Fig. 3a):

1 o
Sylk) = 5~ /_ . S, (ko k) dk, (2a)
S, (k) = % / Sk k) dk,. (2b)

The area of the one-dimensional densities S, and S, both integrates
to 1, as the two-dimensional density S,, has unit volume and is
positive, i.e. S,, >0,

xy =
The density S, is symmetric i.e. S,(k,) = S.(—k,), as the two-
dimensional density S,,(k,,k,) = S,,(-k,,—k,) is symmetric. For

regular patterns, .S, is bimodal, i.e. consists of two lobes with maxima
at the characteristic wavenumber +k, > 0. For sufficiently regular
patterns, the modes are well separated from zero, i.e. S, (k,) > S,(0).
We therefore introduce the density S}, which only consists of the part
along the positive half-axis. It is unimodal and can therefore be readily
compared to the radial density and common unimodal densities without
rescaling:

SF(ky) = {

where the factor 2 ensures that S} has unit area as required for a
density. While S, is symmetric as well, we do not split it in half, as
its mode is centred at zero.

28, (ky), ky >0,

0. k, <0. (32)

When analysing isotropic patterns, i.e. spotted, labyrinthine and
gapped patterns, we first transform the density into polar coordinates:

S,o(k,,0) = Sy, (k, cos (0), k, sin (), 4)
where k, = 1 /k2 + k2 is the radial wavenumber and 6 = atan, (k.. k,) the
angle. The transformation retains the volume of the density at unity
@m)2 [ [7 k. S,4d0dk, = 1 Then, we decompose the density into
a radial component S, and an angular component S,, by integrating
along rings and infinitesimal sectors, respectively (Fig. 3b):

S,(k,) = Il / S,o(k,,0)do, (52)
re J—-m

S00)= == [k, S0k, 0) iy, (5b)
27% Jo

The angular density retains its unit area by the integration, i.e.
@n)72 7k, S.dk, = 1. The radial density has to be explicitly nor-
malized with the factor I,, = 2n)~' [ /" S,y(k,,0)d6 dk,. For fairly
regular patterns, I,y ~ 4.

The symmetry of the two-dimensional density carries over into polar
coordinates, i.e. S,y(k.,0) = S,k 0 + x). The angular density of
anisotropic patterns is therefore bimodal with peaks at 0 and z. We
therefore split the angular density S, in two symmetric components
S; and S,0) = S; (6 + =) spanning each a half-circle and which can
be readily compared to S, and common unimodal densities without
rescaling:

Spky) = {

Where the factor 2 again ensures that the area of the density is unity.

285400), —x/2<60<0,

6.
0, otherwise. (62)

Ecological Complexity 60 (2024) 101104
2.2. Reconstruction of the two-dimensional density

The two-dimensional density can be reconstructed from the prod-
uct of the one-dimensional components up to a residual Res. For
anisotropic patterns,

Syy(kyaky) = Sy (ky) Sy(k,) + Res, (ky ky). (72)

The residual Res,, is small, when the mode of the spectral density
has elliptic contours and continuous derivatives at its maximum, and
zero, when S, and S are Gaussian. For isotropic patterns:

S,o(k,,0) = Iy S.(k,) Sy(0) + Res,y(k,.0). (7b)

The residual Res,, is small, when the angular density S, is flat.
The residuals Res,, and Res,, are not densities, because they integrate
to zero, instead of unity, and because they are not strictly positive,
but have equal positive and negative components. Any pattern can
be decomposed and reconstructed either way, irrespectively if it is
isotropic or anisotropic, or regular at all.

2.3. Rescaling of the spectral density

The density along the primary axis, i.e. S, for anisotropic and .S, for
isotropic patterns, has the local maximum S, or S,.. The location of
this maximum indicates the characteristic wavenumber &, and with it
the characteristic wavelength A, = 2z /k, of the pattern. We rescale the
coordinates in real space by dividing the distance by the characteristic
wavelength (Fig. 4). This yields the non-dimensional distance x/A.,
wavenumber k/k, and non-dimensional density S, - k./(27) = S, /4.,
Sy ko /Qm) =S,/ 2. The maximum of the rescaled density S,,/4, or
respectively S,./4,. is independent of the wavelength and primarily an
indicator of a pattern’s regularity. The rescaling is only applicable to
patterns when the characteristic wavenumber £, is distinct from zero,
and thus not for irregular patterns, so called scale-free patterns, where
the maximum of the spectral density occurs at k, = 0 or where the
spectral density has no local maximum.

2.4. Definition of regularity

A pattern appears the more regular, the more of its spatial vari-
ance is contributed by frequency components with periods close to its
characteristic wavelength A.. As the spatial variance is proportional to
the spectral energy this lends itself to the following definition of the

regularity of a one-dimensional pattern:
+

S)CC 8
1 (€))

c

Regularity, =

We derive the definition in detail in the supplement, section 1.9.
Rescaling with 1/, ensures that the regularity S} /4, is scale-invariant.
The regularity varies between the limit cases of a periodic pattern
and irregular patterns. The regularity is infinite for periodic patterns
with infinite spatial extent. The regularity is zero, for irregular patterns
where the mode of the spectral density is centred at the origin or the
density is flat. Among natural regular patterns, the regularity varies but
is typically not far from 1.

We define the regularity of two-dimensional patterns as:
Sxyc

A

Regularityxy =2 (9a)

Anisotropic patterns appear the more regular, the larger the larger this
value, c.f. Fig. 5d. S, is the maximum value of the two-dimensional
density S,,. For anisotropic patterns, this is approximately equal to the
product of the regularity of its two components, c.f. Eq. (7a):

xc'Syc _ S;rc"Syc

2 o2 (9b)

Regularity,, ~ 2
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Fig. 3. Decomposition of the two-dimensional spectral density into two one-dimensional components. (a) Anisotropic pattern, solid line indicates the density along the positive
half-axis S}, dashed line the density over the full axis S, (b) Isotropic pattern, solid line indicates the density over the half-circle S;, dashed line the density over the full circle
Sy. As the spectra are symmetric, we display only the part spanning the positive half-axis and half-circle further on.
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Fig. 4. Rescaling of a pattern results in a regularity measure that is independent of a pattern’s scale. (a) Blue densities belong to patterns with the same characteristic wavelength
0.5 [L], but different regularity. [L] is an arbitrary unit of length, not to be confused with the spatial extent L. Red densities belong to patterns with characteristic length scale
2.0 [L], but same regularity as the blue patterns. The maxima S, of patterns with the same regularity is not identical when their length scale differs. (b) After scaling distance by
1/4., the maximum of the density occurs at the rescaled wavenumber k/k, = 1. The maximum S} /1, = S} -k, /(2x) of the rescaled density is a length-scale independent measure
of the regularity, i.e. patterns with same regularity have the same rescaled maximum, independently of their characteristic length scale.

Where S, and S, are the maxima of the one-dimensional component
in the direction perpendicular and parallel to the stripes, respectively.
The definition also applies to rare cases where the pattern oscillates
in the direction perpendicular to the stripes, referred to as dashed,
pearled, or rhombic patterns (Siero et al.,, 2015). In this case the
maximum S, occurs at the wavenumber k, > 0 so that the pattern
has a second length-scale 4, =2z /k,.

The regularity of an anisotropic pattern is anisotropic when the
regularity in the two directions differs:

S

ye

—. (10)
xc

Anisotropy of regularity =

The contours of the density are circular, when the logarithm of
the anisotropy is 0, i.e. when S} = S, and eccentric ellipses, when
St < S, or S, > S,,, cf. Fig. 5c. Striped patterns with the same
regularity appear visually different when their anisotropies do not have
the same value, c.f. Fig. 5d.

In polar coordinates, the two-dimensional regularity is:

S
Regularity,, = 2 ;‘. (11a)
c

The regularity of an isotropic pattern is approximately equal to the
product of the regularity in the radial and angular direction:
S,

S,
< =5F = (11b)

Regularity,, ~ 2 Sy, /1—’ e
c c

Isotropic patterns appear the more regular, the larger the larger this
value, c.f. Fig. 6¢. S,, and Sy, are the maxima of the radial and angular

density, respectively. This approximation is applicable to all types
of isotropic patterns, i.e. to spotted, labyrinthine as well as gapped
patterns. This is because the regularity is a property of the spatial
structure, while the isotropic pattern type is primarily determined by
the mean biomass.

For natural patterns where the spots or gaps are not aligned in a
regular grid, the density is isotropic and the angular density uniform
(flat), i.e. Sy = (27)~! so the regularity is:

S,

Regularity, ~ e 110
V3

c

The angular density S, for natural patterns is usually close to uniform,
ie Sy ~ z~!, even when the pattern is fairly regular along the radial
direction.

The definition of the regularity in cartesian and polar coordinates
are identical, i.e. 2 S, /A2 =25, /A2, as the transformation preserves
the maximum. However, the approximation of the regularity based on
the density composition is not identical, i.e. S,t Sye/ A # ST § vel /lf, due
to the residual of the compositions. In general, only the approximation
for the respective pattern type will be accurate.

2.5. Estimation of the regularity

The density is unknown for natural patterns and has to be estimated,
typically from satellite images. We first demarcate the spatial extent
of a pattern with a polygon and then crop the image to the bounding
box of the polygon. The cropped satellite image has the rectangular
spatial extent L, x L, consisting of n, xn, equispaced pixels. We derive
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Fig. 5. Schematic spectral components of anisotropic patterns with different regularity in the direction (a) perpendicular to the stripes S} /1, and (b) parallel to the stripes

S)./4; when the density follows a bimodal bivariate normal distribution. (c) Two dimensional density S,,
0<k,/k, <25-125<k,/k <125 (d) Synthesized anisotropic pattern where the regularity S, - S,

for various combinations of SY /A, and S, /4. Axis limits are
/4% increases from left to right and the anisotropy of the regularity S,./S,,

increases from the bottom to the top. The blue cross indicates the interquartile range of the estimated regularity of natural anisotropic patterns and the red cross the interquartile
range of the estimated regularity of anisotropic model-generated patterns included in the metastudy, c.f. Fig. 7. The pattern has a bivariate bimodal normal density with varying
regularity and was synthesized with a non-stationary stochastic process, c.f. supplement, section 1.16.

a proxy for the biomass concentration from the image and store it
in the rectangular matrix B. We then compute the two-dimensional
periodogram S‘Xy of the pattern as Késtner et al. (2024):

L (Fe (M- (B=uy)) FT) :
where F,

o _ Ll
Yo

vij = exp(—ikyx;) and F,;; = exp(-ik, x;) are the square
Fourier matrices transformlng columns and rows, respectively, with
x;=Lyi/ng, ky=2xi/Ly, y;=Lyi/n,, k,;=2xi/L, M is a matrix of
the same size as B masking the area of patterns with arbitrary spatial
extent. M has the value 1 in the pattern and 0 outside of the pattern.
ny is the number of pixels in the masked area, i.e. ny, = n, n, when M
fills the entire image. u,, is the average and 0'12\/1 the variance of B in
the masked area. - denotes the element-wise product.

While the periodogram is the discrete analogue of the spectral den-
sity, it does not consistently estimate it, as its values randomly scatter,
irrespectively how large the spatial extent or how fine the spatial
resolution. We therefore estimate the regularity based on the axial
averages of the histogram, which consistently estimate the density. For
anisotropic patterns, we first rotate the periodogram so that the maxi-
mum of the density falls onto the x-axis, i.e. so that the stripes are on
average perpendicular to the x-axis. We then integrate the periodogram
in the respectively orthogonal direction to estimate the component in
the direction perpendicular to the stripes S, ; = S yij» and the
% Z,. Sxy,,- ;- For isotropic

(12)

component parallel to the stripes Sy,j =

patterns, we first transform the periodogram into polar coordinates
and then estimate the radial density S, as the integral of the two-
dimensional density along angles for a particular radius, ie. S,; =
1,40 %; S,9,;> and the angular density by integrating along the radial
direction for a particular angle, i.e. S, ; = (2 =5 ik iSep

Most natural patterns contain spurious low frequency components
(Couteron, 2002). These are usually unrelated to the spatial structure
of the pattern and originate for example from trends in soil reflectance.
They appear as a second lobe centred at the origin k = 0 in the
spectral density, beside the lobe of the regular spatial structure centred
at the characteristic wavenumber k.. We suppress this lobe with a high-
pass filter before estimating the regularity. We determine the cut-off
wavenumber of the filter as the wavenumber where the radial spectral
density reaches its minimum between the maximum of the spurious
lobe located at the origin and the maximum of the lobe of the regular
structure, centred at the characteristic wavenumber, c.f. supplement,
section 1.11. In the case the spatial extent of the masked pattern is
elongated, i.e. when the effective side length differ, we smooth the
density along the longer side to consistently estimate the density, c.f.
supplement, section 1.10.

2.5.1. Uncertainty of the density estimate

The density estimates S,,5).S, and S, have a random error, as
they are averages of the randomly scattered periodogram. The error
of the density estimate propagates to the regularity estimate. The error
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depends both on the regularity of a pattern and the shape of the spectral
density. The larger the relative spatial extent L, L, /Af, the smaller the
error. The spatial extent of an image has therefore to be sufficiently
large for reliably estimating the regularity. We recommend that the
side length L spans at least ten wavelengths .. For model-generated
patterns, the regularity can be accurately estimated by making the
computational domain sufficiently large. The spatial extent of most
natural patterns is not large. The regularity of an individual pattern
can therefore not be accurately estimated. The regularity should thus be
evaluated as an ensemble for a particular regional, where the estimated
regularity is combined into a more accurate estimate, for example into
the median regularity. We elaborate on the uncertainty and how it
is influenced by the spatial extent in detail in the supplement, section
1.12.

2.5.2. Bias of the regularity estimate

The regularity estimate is also biased, i.e. the error contains a sys-
tematic component. The bias propagates from the bias of the estimated
maximum S, and the characteristic wavenumber k. of the mode. The
maximum S, is typically overestimated, especially for patterns with low
regularity, as .S, is close to .S, in a wider wavenumber range so that it
is likely that one of the values of S, in this range, which randomly vary
as described above, exceed the value S,.. The bias of the characteristic
wavenumber depends on the shape of the density. The characteristic
wavenumber is typically underestimated, when the density is skewed
towards low wavenumbers, as it is more likely that the maximum value
of S, occurs at wavenumbers lower than k. but overestimated when
the spectral density is skewed towards high wavenumbers. The spectral
density is skewed towards high wavenumber, when it is log-normal
and skewed towards low wavenumbers when S, is (bimodal) normal
so that the tails of the two modes at +k, add for low wavenumbers. It is
therefore necessary to evaluate the shape of the density for estimating
the bias, or even just its sign. When the regularity of the pattern is
low, both the random error and the bias can be reduced by smoothing
the density estimate S, and S,. However, when the regularity of the
pattern is high, smoothing increases the error as it reduces the height
of the peak (Percival et al., 1993; Buttkus, 2010; Brillinger, 2001).
The optimal degree of smoothing depends on the masked area, the
regularity of the pattern, and the shape of the density. There is an
optimal degree of smoothing for which the standard error is minimal.
The uncertainty can also be reduced by fitting a parametric density.
However, this estimate is also biased when the shape of the parametric
density is not identical to that of the density of the pattern. Here,
we do not apply a correction for reducing the bias or random error,
as it is difficult to determine the optimal degree of smoothing or an
appropriate density model, in particular if the spatial extent is not
square but determined by masking.

2.5.3. Upper limit of the regularity estimate

For a pattern with finite spatial extent, the product S, 4k/Q2x) =
S../L, is the fraction of spatial variation contributed by the main
frequency component. For periodic patterns without harmonic fre-
quency components, all the spatial variation stems from the dominant
frequency component and the product is 1. A finite spatial extent
consequently limits the maximum value that can be estimated for the
regularity. For example, the regularity in the direction perpendicular to
the bands can be at most L, /4., for anisotropic periodic patterns with a
single frequency component. This can be understood by interpreting the
regularity as the number of times a pattern repeats before decorrelating.
When the spatial extent is finite, the maximum number of times a
pattern can repeat is L,/A, times. The estimated regularity for a
cropped periodic pattern thus depends on the size of the spatial extent.
For natural patterns, the estimated regularity does not depend on the
spatial extent, as the regularity is typically smaller than the limit set by
the spatial extent (see Fig. 6).
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3. Meta-analysis of regular environmental spatial patterns

To gauge the regularity of environmental spatial patterns and to
determine how well computer models reproduce it, we conduct a sys-
tematic study on spatial patterns displayed in the literature. We include
238 patterns displayed in the literature and in this very publication. The
patterns are selected from the 60 most cited and recent publications
which display regular environmental spatial patterns. A detailed list of
references with analysis results is given in the supplement, section 2.

We only include patterns where the length scale can be clearly
identified, i.e. exclude scale-free patterns. We manually extracted the
images with patterns from the publications, including only clearly
regular patterns, i.e. patterns where the spectral density consists of a
lobe where the mode is well separated from the origin. As we only
include highly regular patterns in the study, the cut-off wavenumber
for the suppression of low-frequency components is well defined. We
also include only natural patterns or patterns generated by models
which mimic environmental systems, i.e. exclude schematic figures.
Most model-generated patterns displayed in the literature have been
generated with deterministic models. A few patterns though have been
generated with models which incorporate stochasticity. We analyse
them separately. For publications which display many patterns, we
select a representative subset, to avoid bias towards those publications.

We prepare the images by manually cropping away frames and
specifying masks to exclude annotations and areas surrounding natural
patterns, and grouped them into natural and model-generated patterns,
as well as into one-dimensional and two-dimensional patterns. The
remainder of the processing is automatic, including the classification
as isotropic and anisotropic patterns, the suppression of spurious low
frequency components, c.f. supplement section 1.11, the periodicity
test Kdstner et al. (2024) and the estimation of the regularity. We
use order statistics for the analysis of the regularities, as they are
robust against outliers and deviation from normality. We present the
median and quartiles for the regularity of natural and computer gen-
erated patterns, and test for a difference between the medians of the
groups (Mood, 1954). We used Kendall’s correlation, retransformed to
Pearson’s measure (Kruskal, 1958), to explore the relation between the
regularity in the two principal directions, x-y and r-s, respectively.

Measured along the primary axis, i.e. in the direction perpendicular
to the stripes, anisotropic natural patterns have a median regularity
S./A. of 0.80 compared to 1.93 for patterns generated with deter-
ministic two-dimensional models, and 3.52 for patterns generated with
one-dimensional models (Fig. 8a). Along the radial direction, natural
isotropic patterns have a median regularity S,./A. of 0.67 compared
to 2.36 for patterns generated with deterministic models. The differ-
ences between the median regularity along the primary axis of natural
patterns and patterns generated with two-dimensional deterministic
models are highly significant, with Mood’s median test yielding p = 3.5
-10798 for anisotropic and 8.9-10~!2 for isotropic patterns. Studies using
stochastic models are rare, with no study on anisotropic patterns and
only a few studies on isotropic patterns. The regularity of isotropic
patterns generated with stochastic models is closer to that of the natural
ones with a regularity S,./4, of 1.18 (Fig. 8b). Patterns with lower
regularity can of course also be generated with models which do
not incorporate scale dependent feedbacks, for example, the isotropic
patterns in Siteur et al. (2023) have a median regularity of 1.40 on the
radial direction.

The contrast is also strong for anisotropic patterns along the sec-
ondary axis. For anisotropic patterns, the median regularity in the
direction parallel to the stripes S, /4, is 0.53 for natural and 1.15
for model-generated patterns (Fig. 8c). For isotropic patterns, the dif-
ference is smaller, with a median regularity along the angular-axis
S.p is 0.42 for natural and 0.51 for computer generated patterns,
respectively (Fig. 8d). The analysis thus confirms that the regularity of
model-generated patterns is systematically higher than that of natural
patterns.
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Fig. 6. Schematic (a) radial and (b) angular spectral component of isotropic patterns. (c) Synthesized isotropic pattern where the regularity S, /4, increases from left to right.
Red and blue vertical lines indicate the interquartile ranges of natural and model-generated patterns, c.f. Fig. 7. Pattern synthesized with a non-stationary stochastic process, c.f.

supplement, section 1.16.

For anisotropic patterns, the correlation between the regularity in
the direction perpendicular (S,./4.) and parallel (S,./4.) to stripes
was very high, with 0.998 for natural and 0.897 for model-generated
patterns. Due to the high correlation, the regularity as a whole can be
reasonably assessed by the regularity in the direction perpendicular to
the stripes. For isotropic patterns, the correlation between the radial
S, /4. and angular S,/4, regularity is low for natural patterns (—0.258)
but high for model generated patterns (0.971). This difference is not
coincidental, because natural patterns tend to be stochastic with a
uniform angular density so that the regularity is primarily determined
by the radial density. The model-generated patterns tend to form a
periodic hexagonal pattern in contrast, where the maxima of both the
radial and angular density is primarily determined by the pattern size
L. The spatial structure of model-generated patterns thus systematically
differs from the natural ones.

The systematic overprediction of the regularity by model-generated
patterns is also corroborated by the periodicity test of Kistner et al.
(2024). Only 10% of the natural patterns in the metastudy have signif-
icant frequency components at a confidence level of p = 0.05, not too
far from the 5% expected by chance, while 53% of the patterns gener-
ated with non-stochastic models in the metastudy pass the periodicity
test. Model generated patterns thus tend to be periodic, while natural
patterns do not.

3.1. Spectral densities

This difference between the model-generated and natural patterns
becomes apparent when comparing their spectral densities. Along the
primary axis, the rescaled density .S, /4., or respectively S,./A., of the
model-generated patterns is on average much narrower and higher than
that of the natural patterns (Fig. 8a,c). The same holds for the rescaled
density S,/4, of anisotropic patterns in the direction parallel to the
stripes (Fig. 8b). The angular density .S, of model-generated patterns

consists of six peaks as expected for hexagonal patterns, while the
angular density of natural patterns is essentially flat (Fig. 8d). The
model-generated patterns are therefore considerably more regular than
natural patterns.

We note that the regularity of the average density S} and S, is
identical to the average regularity of the patterns, though the averaging
introduces several distortions. Parametric density models should thus
not be chosen based on the shape of the average density. However,
this does not influence the comparison of model-generated patterns
with natural patterns, as the artefacts distort both groups in a similar
manner. Averaging distorts the shape of the densities along the primary
axis S} and S, increasing its kurtosis so that the is the peak of the
averaged density is more pointed and the tail heavier compared to the
density of a single pattern, which can be visualized by averaging two
Gaussian densities with the same mean but different standard deviation:
the average density is as sharply pointed as the density with the lower
standard deviation near the mean, but has similar tails as the density
with the higher standard deviation, c.f. illustration in the supplement,
section 1.13. Another artefact is introduced by rotating the densities
before averaging so that their maximum occurs at the angle § = 0,
as this exaggerates the peak of the angular density S, at the origin
(Fig. 8d).

The regularity varies strongly within each group in the dataset of
our metastudy, as patterns stem from very different ecosystems and
are generated with different models, as evident from the interquartile
ranges in Fig. 7. However, the overprediction of regularity by modelled
patterns is nonetheless very clear. Several factors make us believe that
the contrast between natural and model-generated patterns might be
even stronger than indicated by the metastudy. First, the regularity of
the model-generated patterns in the metastudy is likely underestimated,
as the spatial extent of most model-generated patterns in the metastudy
is relatively small, with a median of 7 characteristic wavelengths only.
The regularity of the natural patterns in contrast is not strongly affected
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Fig. 7. Regularity of patterns included in the meta-analysis. The stars indicate the median, sticks the interquartile range. Numbers are the number of samples within each group.
There are no anisotropic patterns generated with stochastic models in the dataset. Note that the interquartile range indicates the variation in the data, not the uncertainty in the
median, which is smaller. We provide a complementary figure with confidence intervals in the supplement, Fig. 11.

by their spatial extent, as it is sufficiently large, with a median of 11
characteristic wavelengths, when accounted for masking. Second, it
is plausible that the regularity of natural patterns is overestimated, as
it is likely that studies preferentially display natural patterns, or parts
thereof, which appear particularly regular.

4. Discussion and conclusion

Conventionally, spatial patterns have been classified as being either
regular or irregular, and the spatial structure of regular patterns has
been primarily characterized by their dominant wavelength. Here, we
find that regularity is a nuanced property which can take any state in
between the limit cases of an irregular or a periodic spatial structure.
At least two parameters are required for describing the spatial structure
of regular patterns, one for its characteristic length scale and one for its
regularity. As the spatial structure of patterns is primarily determined
by their spectral density, the two parameters are derived from the
characteristic wavelength and the degree of variation around it. How
regular a pattern appears depends on how closely the spectral energy
is concentrated around its dominant frequency component. Based on
this observation, we introduce a method for quantifying the degree of
regularity of environmental spatial patterns, beyond the binary classifi-
cation of regular patterns as regular or not. Our method is based on the
height of the mode of the rescaled density and yields a value in between
the extreme limits of irregular pattern with no finite characteristic
length scale and periodic patterns, where all the spatial variation is
explained by the characteristic frequency component and its harmonics.
Our method allows one to compare the spatial structure quantitatively,
for example between field sites or for validating models. Our approach
is in line with recent recommendations that discourage the use of sta-
tistical tests with dichotomous outcomes (Cumming, 2014; Wasserstein

and Lazar, 2016), and calls for embracing variation in data (Gelman
and Carlin, 2017) and for adopting more holistic approaches beyond
significance testing (Wasserstein et al., 2019).

We advocate for our regularity measure based on the height of
the mode, as it is simple and can be directly read from a plot of
the rescaled spectral density. It is uniquely defined, can distinguish
between irregular and regular patterns, and is relatively insensitive
to the shape and the tails of the distribution of the spectral density,
as well as only moderately sensitive to the uncertainty of the density
estimate it is based on. The regularity measure can also be based
on various other properties of a pattern, such as the width of mode,
the interquartile range, the standard deviation, or the entropy of the
spectral density, the decay rate of the autocorrelation, as well as various
statistics of patch sizes and spacing. We compare the alternatives in
detail in the supplement, section 1.15, and show that the measures
based on the spectral density and autocorrelation can be uniquely
transformed into comparable values when the particular distribution
type of the spectral density is known and the value of the property is
finite. The transformed measures further converge to the same limit
with increasing regularity of a pattern. For an unknown distribution,
the transformed values differ at most by a constant factor for suffi-
ciently regular patterns. While equivalent for highly regular patterns,
the reliability of the methods differs in the general case. The standard
deviation of the density is not a suitable property for measuring, as
it is sensitive to the tails and not finite for several common unimodal
distributions, including distributions of binarized patterns. The entropy
is also sensitive to tails. Measures based on the autocorrelation suf-
fer from ambiguity in detecting the oscillation corresponding to the
characteristic component when harmonic frequency components are
present. The estimates based on the width of the mode is close to the
estimate based on the height of the mode, but complications arise when
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Fig. 8. Averaged spectral densities of anisotropic patterns in the direction (a) perpendicular to stripes and (c) parallel to stripes, and for isotropic patterns (b) along radii and (d)
along concentric rings, averaged over all patterns within the respective group, separated into natural (blue) and model-generated (red) patterns. We rescale the spectral densities
before averaging so that the maximum of all patterns occurs at k/ /(2z) = 1. Spurious low frequency components with wavenumbers k < k. have been suppressed in the periodogram
before computing the densities, c.f. Fig. 4. Note that regularity of the average primary densities S, and S, is the same as the average regularity of the individual patterns, but
the shape of the density becomes more pointed near the maximum due to the averaging. The maximum of the angular density S, at the origin is overestimated, as we rotate the

maximum to 0 before averaging.

the regularity is low, as the modes on the positive and negative half-
plane merge. It is also more sensitive to the uncertainty in the density
estimate. Comparable transformations for statistics of the patch size and
spacing can probably be found for patterns that are sufficiently regular.
We do not explore patch statistics further, as they are local properties
and hence unsuitable for distinguishing patterns with intermediate
regularity from patterns with periodic spatial structure in the general
case (Kastner et al., 2024). However, patch statistics can be favourable
for studying the variation of local properties of patterns, such as along
hillslopes (Pinto-Ramos et al., 2023). They are also affected by the
ambiguity in the identification of individual patches

4.1. Regularity of environmental spatial patterns

Our metastudy reveals that environmental spatial patterns are of
intermediate regularity. Their spectral energy is scattered over a wide
frequency range, in proportion to a lobed spectral density which is
typical for random fields generated by stochastic processes (Yaglom,
1962; Percival et al., 1993; Buttkus, 2010; Lindgren et al., 2013). This
differs from periodic patterns where the spectral energy is concentrated
in well-separated narrow peaks. While the number of patterns in the
metastudy is moderate (= 200), and estimates of regularity inevitably
depend how patterns are identified as such and how their spatial extent
is delineated, the overall finding that environmental spatial patterns are
of intermediate regularity is in agreement with our recent study where
we test a much larger number (~ 10000) of regular environmental
spatial patterns for periodicity (Kastner et al., 2024). Our finding con-
tradicts the established view of regular environmental spatial patterns
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as periodic (Meron, 2015). However, the intermediate regularity of
natural patterns and correspondingly the scattering of the spectral
energy over a relatively wide frequency range, is hidden in plain sight
in many publications without that this was recognized in those publi-
cations (Lejeune et al., 1999; Couteron, 2001; Couteron and Lejeune,
2001; Couteron, 2002; van de Koppel et al., 2005; van de Koppel and
Crain, 2006; Barbier et al., 2006; Koffi et al., 2008; Wang et al., 2009;
Deblauwe et al., 2011; Kefi et al., 2014; Couteron et al., 2014; Tarnita
et al.,, 2017). While the distinction between periodic and regular is a
mathematical formality, it is relevant for the conceptual understanding
of pattern forming ecosystems, since conventional models generate
patterns which are considerably more regular than natural ones. Our
metastudy reveals that patterns generated with deterministic models
are indeed much more regular than natural ones. Conclusions drawn
from these models are not necessarily invalid. However, since the
spatial structure is frequently employed as an indicator of ecosystem
health and resilience, caution is warranted.

Our metastudy also reveals that patches in natural isotropic patterns
are aligned randomly and not in a hexagonal grid as patterns generated
with deterministic models. While patches in natural regular patterns
are typically surrounded by six neighbours, the angle of rotation varies
locally. The angular spectral density of natural isotropic patterns is
consequently flat, in contrast to the discrete density with six peaks of
patterns generated with deterministic models. The patches in natural
patterns do not align in a grid, as there is no process which imposes
a direction. Patches probably align with respect to local exogenous
perturbations. The gridded hexagonal structure of model-generated pat-
terns is thus likely an artefact of homogeneous model domains. This is
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different in anisotropic systems, where natural processes indeed impose
globally a direction. Vegetation at hillslopes, for example, aligns paral-
lel to the elevation contours as water flows downhill. The difference
in the spatial structure of natural isotropic and hexagonal model-
generated patterns can be revealed by estimating the spectral density
by first splitting a pattern into tiles of equal size and than averaging
the periodograms of the tiles Bartlett (1948): while patches in natural
patterns have on average six neighbours, the axes of rotation vary be-
tween the tiles, so that the peaks in the periodograms of the individual
tiles do not constructively overlap during averaging which results in a
flat angular density. In contrast, patches are aligned globally along the
same axes in model-generated patterns so that the peaks in the angular
spectrum overlap which results in an angular density with six peaks.
The same result can also be reached by determining local directions
based on a Voronoi tessellation around patch centres (Bordeu et al.,
2016). While the hexagonal structure of model-generated structures
is typically imperfect, it is polychrystalline, i.e. it consists of regions
with hexagonal structures, which are separated by sharp boundaries
and differ in their rotational angle. This spatial structure is reflected
in their radial spectrum consisting of a narrow and high peak, which is
still quite different to the lobed density of natural regular patterns.

4.2. Causes of intermediate regularity

A possible reason for the lower regularity of natural patterns could
be the influence of processes without scale-dependent feedbacks on
the pattern formation. For example, vegetation patterns can form by
the attraction of grazers to areas with young grass and respectively
low biomass, rather than by the redistribution of water (Siteur et al.,
2023). However, while this can be a factor in savannahs, it cannot
explain the lower regularity of patterns in semi-arid regions where
patches of biomass are separated by bare ground. Pinto-Ramos et al.
(2023) showed that striped patterns with intermediate regularity can
form under certain conditions due to instabilities at the boundary.
However, this still predicts periodic patterns for a wide parameter
range, and thus cannot explain the general absence of periodic striped
patterns (Késtner et al., 2024). It also cannot explain the lack of
periodicity of isotropic patterns. Another possible explanation could
be that the spatial structure of natural patterns is still in a transient
state, i.e. they are still strongly influenced by a random initial condition
and yet have to crystallize into periodic structure. However, while the
initial condition can influence the spatial patterns for long times, even
indefinitely (Caviedes-Voullieme and Hinz, 2020), model-generated
patterns appear much more regular than natural patterns after rela-
tively short periods, i.e. a couple of decades. A plausible explanation
for the intermediate regularity is that regular patterns form through
stochastic processes, i.e. through random spatial perturbation to the
biophysical processes (van Kampen, 1976), which can be reconciled
with established models, as deterministic models can be made stochas-
tic by slightly varying the model coefficients in space. A few studies
incorporated spatial noise in their models and generated less regular
patterns (Thompson et al., 2008; McGrath et al., 2012; Yizhaq et al.,
2014; Yizhaq and Bel, 2016; Yizhaq et al., 2017; Echeverria-Alar et al.,
2023). However, the means by which spatial heterogeneities modulate
the pattern formation has not yet been explored. Further research is
also necessary to study the sources of environmental heterogeneity,
their magnitude and scales. Potential factors are soil properties (Baveye
and Laba, 2015), in particular grain size, modulating infiltration and
plant growth, topography (van der Ploeg et al., 2012; McGrath et al.,
2012; Caviedes-Voullieme et al., 2021), modulating the flow of water,
as well as biotic factors, such as seed dispersal (Consolo and Valenti,
2019) and localized faunal activity (Eldridge et al., 2012). Random
environmental heterogeneities should be put in context with the more
easily recognizable systematic variations in the environment, for exam-
ple along catenas (Nicolau et al., 1996) or across valleys (Gandhi et al.,
2018). Another possible factor is spatially random faunal activity.
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The response of regular environmental spatial patterns to envi-
ronmental pressure, such as overgrazing or declining precipitation
due to climate change has predominantly been studied with deter-
ministic models generating periodic patterns (Kealy and Wollkind,
2012; van der Stelt et al., 2013; Sherratt, 2013; Siteur et al., 2014b,a;
Kyriazopoulos et al., 2014; Kinast et al., 2014; Dagbovie and Sherratt,
2014; Zelnik et al., 2016; Sherratt and Mackenzie, 2016; Gowda et al.,
2016; Zelnik et al., 2017, 2018). It remains to be studied to what
extent heterogeneity matters for ecosystem resilience and productivity.
Environmental heterogeneity likely matters because a pattern with
intermediate regularity will respond slightly differently in distinct lo-
cation to environmental pressure, due to its finite correlation length,
while a periodic pattern can only adapt in its entirety, thereby facil-
itating catastrophic shifts like the simultaneous die back of either all
vegetation patches or of every other patch. Our method can reliably
quantify spatial regularity, which is essential for unravelling the re-
lations between a pattern’s structure and the ecosystem’s productivity
and resilience.
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