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A B S T R A C T

Many resource-limited ecosystems exhibit spatial patterns where patches of biomass alternate with bare ground.
Patterns can enhance ecosystem functioning and resilience, depending on their spatial structure. Particularly
conspicuous are regular patterns, where patches are of similar size and spaced in similar intervals. The spatial
structure of regular patterns is often described to be periodic. This has been corroborated by statistical testing of
natural patterns and generation of periodic patterns with deterministic reaction–diffusion models. Yet, natural
regular patterns appear conspicuously erratic compared to periodic patterns. So far, this has been attributed
to perturbations by noise, varying patch size and spacing. First, we illustrate by means of an example that
the spatial structure of regular vegetation patterns cannot be reproduced by perturbing periodic patterns. We
then compile a large dataset of regular dryland patterns and find that their spatial structure systematically
differs from periodic patterns. We further reveal that previous studies testing for periodicity overlook two
aspects which dramatically inflate the number of false positives and result in the misclassification of patterns
as periodic. We amend the test procedure by accounting for both aspects, finding that regular natural patterns
have no significant periodic components. Lastly, we demonstrate that stochastic processes can generate regular
patterns with similar visual appearance, spatial structure and frequency spectra as natural regular patterns.
We conclude that new methods are required for quantifying the regularity of spatial patterns beyond a binary
classification and to further investigate the difference between natural and model generated patterns.
1. Introduction

Many physical, chemical and biological systems alternate in space or
time between different local states (Rietkerk and van de Koppel, 2008;
Kondo and Miura, 2010; Goehring, 2013). Fascinating spatial patterns
(Fig. 1a, b) consisting of patches of high biomass alternating with
bare ground are found in many resource-limited ecosystems (Rietkerk
and van de Koppel, 2008). The emergence or change of such patterns
may indicate the deterioration and imminent catastrophic shifts in
ecosystems (Kéfi et al., 2007; Kefi et al., 2014), as they are linked
to environmental harshness such as aridity (Rietkerk et al., 2002).
Moreover, patterns can also increase ecosystem productivity (Pringle
et al., 2010), water use efficiency (Boer and Puigdefábregas, 2005)
and resilience (Borgogno et al., 2009). The relation between a pat-
tern’s characteristics and its effect on resilience is therefore compli-
cated (Pascual and Guichard, 2005). Ecosystem resilience depends on
the particular properties of its pattern, such as its characteristic wave-
length (Yizhaq et al., 2005; Siero et al., 2015) or structure (Weerman
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et al., 2012; Roitberg and Shoshany, 2017; Bastiaansen et al., 2020;
Rietkerk et al., 2021). A thorough understanding of a pattern’s structure
and its relation to ecosystem functions is thus paramount for assessing
ecosystem health and susceptibility to environmental pressure.

Whenever something alternates in a regular manner, it is reasonable
to consider the presence of periodicities. Identifying periodicities can
reveal deterministic processes and thus facilitate a better understand-
ing of the physical system at hand. An example are the ocean tides
driven by the perpetual movement of the celestial bodies (Doodson,
1921; Parker, 2007). Periodic patterns can also be spatial, for example
in plantations where individual trees are aligned with respect to a
common reference (Fig. 1ci, di). Conspicuously regular spatial patterns
are also found in ecosystems with scale-dependent feedbacks such as
close-range facilitation and far-range competition (Fig. 1ai, bi). They
are therefore described as periodic, i.e. to repeat at their character-
istic wavelength corresponding to the distance between neighbouring
patches (Couteron and Lejeune, 2001; Couteron et al., 2014; Okayasu
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and Aizawa, 2001; Rietkerk et al., 2002; Lejeune et al., 2004; Deblauwe
t al., 2008, 2011, 2012; Borgogno et al., 2009; von Hardenberg et al.,

2010; Kletter et al., 2012; Penny et al., 2013; Zelnik et al., 2013, 2015;
Barbier et al., 2014a,b; Meron, 2015; Getzin et al., 2015; Messaoudi
t al., 2020; Tlidi et al., 2020; Wang et al., 2023; Moreno-de Las Heras

et al., 2011; Sankaran et al., 2019; Kefi et al., 2014; Siteur et al., 2023;
Mander et al., 2017; Maestre et al., 2016; Sheffer et al., 2013). Natural
patterns can be randomly perturbed by exogenous factors so that they
o not exactly repeat. Such perturbations have been described by
dded noise, varying patch size and varying distance between patches
Couteron, 2002; Scheffer et al., 2009; Kéfi et al., 2010a; Barbier et al.,

2010; Moreno-de Las Heras et al., 2011; Weerman et al., 2012; Sheffer
et al., 2013; Kefi et al., 2014; Meron, 2015; Mander et al., 2017;
Sankaran et al., 2019; Bastiaansen et al., 2020; Siteur et al., 2023).
Perturbed periodic patterns still have a periodic structure, which can
be revealed by their spatial autocorrelation or frequency spectra, as in
the case of plantations (Fig. 1cii, dii).

However, it is reasonable to consider that the process of pattern
formation is perturbed as well, in which case it resembles a stochas-
tic process. This means that the biophysical feedbacks are randomly
perturbed, not that they are absent (van Kampen, 1976). Patterns
which form through stochastic processes can still be regular, i.e. appear
similar to themselves when shifted by the distance of one character-
istic wavelength, but the perturbations prevent the crystallization of
a periodic structure. Many stochastic physical processes alternate in a
regular fashion and create patterns which appear similar to themselves
when shifted in time or space by a distance corresponding to their char-
acteristic wavelength. Examples are the climatic Daansgard-Oeschger
warming events (Ditlevsen et al., 2005) the El Niño - Southern Oscil-
ation (ENSO) (Stone et al., 1998; An et al., 2020), or the interval at
hich hens lay eggs (Johnston and Gous, 2007). Both periodic patterns
nd regular stochastic patterns appear similar to themself when shifted

by a multiple of their characteristic wavelength. The fundamental
difference between periodic and a regular stochastic patterns is that
periodic oscillations remain indefinitely correlated in time or globally
n space, while stochastic oscillations decorrelate. The autocorrelation
f periodic patterns thus oscillates with constant amplitude, as in the
ase of tidal oscillations, while the autocorrelation of regular stochastic
atterns oscillates with decaying amplitude, as in the case of ENSO. As
he amplitude of the autocorrelation of regular environmental spatial
atterns decays (Fig. 1aii, bii), it seems plausible that they form through

stochastic processes.
This observation contradicts the general perception that the spatial

tructure of environmental spatial patterns is periodic. Previous studies
supported this by analysing regular environmental spatial patterns

ith methods suitable for finding periodicities hidden in a noisy back-
round (Couteron and Lejeune, 2001; Couteron, 2001; Couteron et al.,

2006; van de Koppel et al., 2005; Kefi et al., 2014). Motivated by our
bservation, we investigate whether the spatial structure of regular
egetation patterns is periodic, and if it can be reproduced by stochastic
rocesses instead.

Patterns are usually classified based on a statistical test, as a vi-
ual inspection of their correlation structure or frequency spectrum is

subjective. For this, a pattern is first transformed into the frequency
omain. Then, it is tested if the frequency component with the largest
agnitude significantly exceeds the value expected for noise. These

ests led to the conclusion that regular environmental patterns are
eriodic. However, previous studies have missed out two important
spects which has inflated the number of false positives (Type-I errors)
nd resulted in the misclassification of regular environmental spatial
atterns as periodic: first, previous studies test the frequency compo-

nent with the largest magnitude against a critical value applicable for
testing a single a-priori known frequency component. However, testing
the frequency component with the largest magnitude is equivalent
to testing all frequency components and rejecting the null hypothesis
when the magnitude of any component exceeds the critical value. The
 p

2 
probability that the magnitude of any frequency component exceeds
the critical value is much higher than that the magnitude of a sin-
le a-priori known frequency component exceeds it, as it consists of

multiple comparisons. The critical value has to be raised so that the
probability of misclassifying a random pattern as periodic (Type-I error)
is in accordance with the confidence level (Thomas, 1973). Second,
previous studies assumed white noise as the null model, which has a flat
spectral density, and to a limited extent to coloured noise, which has
no local maxima (Barbier et al., 2010). Noise is the stochastic, i.e. non-
eterministic component of an image. The spectral density of stochastic
rocesses is not necessarily flat. Environmental spatial patterns typi-
ally have a strong stochastic component with a lobed spectral density
.e. the shape of its density is similar to that of unimodal probability
ensity, which has a local maxima and slowly tapers off to either side

(Fig. 1aiii, biii). As the magnitude of frequency components of noise with
obed spectral density exceeds the expected magnitude of noise with a

flat density, testing against a flat density thus inflates the number of
Type-I errors in such a case. This can be avoided by testing against the
lobed density. Here, we revise the statistical test and apply it to a large
novel dataset of environmental spatial patterns, to determine if regular
environmental spatial patterns are periodic or not.

This manuscript is structured as follows: In Sections 1.1 and 1.2, we
clarify the definitions of periodic patterns forming through determinis-
tic processes and regular patterns forming through stochastic processes.
We illustrate their spatial correlation structure and frequency spectra,
and demonstrate that the structure and spectra of natural regular
patterns is distinct from that of periodic patterns, but similar to that
of regular patterns originating from stochastic processes. In Section 2,
we introduce a statistical test for periodicity, accounting both for the
ffect of multiple comparisons and that the stochastic component of a

pattern can have a lobed spectrum. In Section 3, we apply the test to
a large novel dataset of regular patterns, finding that the patterns are
not periodic. In Section 4 we discuss the implications of our findings.

1.1. Spatial structure of periodic and regular patterns

Regular environmental spatial patterns are often interchangeably
escribed as being regular and periodic, with the terms not being
learly distinguished. We therefore clarify the differences first. In the
dealized case of patterns with infinite spatial extent, the spatial struc-
ure is determined by the autocorrelation function 𝑅, which shows the
egree of similarity of a pattern with a copy of itself shifted in space.
atterns with finite spatial extent can be interpreted as being cropped
rom a pattern with infinite extent, and the autocorrelation function
an be estimated from it, c.f. supplement, section 4.2. This estimate
s called the correlogram 𝑅̂. The correlogram systematically deviates
rom the autocorrelation function due to the finite spatial extent, which
omplicates its analysis, as elaborated at the end of the section.

1.1.1. Periodic patterns
A one-dimensional periodic pattern repeats, i.e. is identical to itself

when shifted by a particular distance. The autocorrelation function con-
equently periodically oscillates as well, with the value 1 at multiples
f this distance. When the pattern consists of a dominant frequency
omponent with wavenumber 𝑘𝑐 and harmonic components at integer
ultiples of this wavenumber, then the distance at which the pattern

epeats is the characteristic wavelength 𝜆𝑐 = 2𝜋∕𝑘𝑐 . In two dimensions,
 periodic pattern repeats, i.e. is identical to itself, when translated
nto any direction with rational angle. The distance at which it repeats
epends both on the direction and the frequency components. The au-
ocorrelation function consequently periodically oscillates with value 1
n any direction, where the distance depends on the direction. Periodic
xis-symmetric patterns, such as striped patterns, can therefore be cut
n identical stripes, and radially-symmetric patterns, such as hexagonal

Fig. 2a , b ).
atterns, can be tessellated into identical tiles ( i i
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Fig. 1. Regular natural and periodic artificial vegetation patterns with their correlograms and periodograms. (a) Natural anisotropic pattern in Chihuahua, Mexico (107.15◦ W
31.34◦ N). Characteristic wavelength 𝜆𝑐 = 88 m, relative image size 𝐿∕𝜆𝑐 = 9. (b) Natural isotropic pattern in Coahuila, Mexico (103.14◦ W 27.66◦ N). Characteristic wavelength
𝜆𝑐= 32 m, relative size of uncropped image 𝐿∕𝜆𝑐 = 21. (c) Artificial striped pattern of a plantation in Granada, Spain (2.69 W◦, 37.57 ◦ N). Characteristic wavelength 𝜆𝑐 = 7.5 m,
relative size uncropped image 𝐿∕𝜆𝑐 = 32. (d) Artificial hexagonal pattern of a plantation in Seville, Spain (5.36◦ W 37.40◦ N) Characteristic wavelength 𝜆𝑐 = 14 m, relative size
of uncropped image 𝐿∕𝜆𝑐 = 15. Large images have been cropped for display to a spatial extent with a side length of 10 wavelengths. Satellite images by Maxar Technologies and
Google (2023).
Periodic patterns can form in excitable deterministic systems
(Meron, 1992; Murray, 2002) but cannot be expected to be immaculate
in nature as they are likely perturbed by spatial noise, randomly
varying patch size, spacing or shape. While such perturbations add
random, i.e. stochastic components, the pattern retains a periodic
spatial structure as long the individual patches remain aligned with
respect to a global reference. The autocorrelation of a perturbed peri-
odic pattern still oscillates with constant amplitude, but the amplitude
is reduced globally by a constant factor due to the presence of the
stochastic components. Trees in plantations are often periodic as they
are aligned with respect to a global reference (Fig. 1ci, di). The un-
derlying spatial structure remains periodic even if individual trees are
displaced, deviate in size or are removed. The autocorrelation of both
the natural striped and spotted pattern oscillates, identifying them as
regular patterns (Fig. 1aii, bii). However, the oscillation decays rapidly,
which indicates that they do not have a periodic spatial structure.
The natural spotted pattern also does not have a hexagonal structure,
i.e. patches are not aligned along axes of symmetry as in the case of the
periodic pattern. In contrast, the periodic spatial structure is clearly
visible in the correlograms of the plantation patterns (Fig. 1cii, dii).
The absence of a periodic structure cannot merely be explained by a
perturbation of a periodic pattern. We demonstrate this by synthesizing
a strongly perturbed periodic pattern. Despite the perturbations, the
periodic structure is retained (Fig. 2ai, bi).
3 
1.1.2. Regular patterns
While patterns are often described as regular, regularity itself is

often not clearly defined. Weerman et al. (2010) identify a pattern
as regular when its autocorrelation has a local maximum at a lag
distance separate from zero. Based on this, we introduce the following
definition: a pattern is regular when the autocorrelation oscillates in
at least one direction. The amplitude of the oscillation may decay. A
regular pattern is thus similar, but not identical, to itself when shifted
by a distance equal to its characteristic wavelength 𝜆𝑐 . The further a
pattern is shifted, the more the similarity decreases, according to the
decay of the autocorrelation. The patches are only aligned with respect
to their neighbours but not with respect to a global reference. The size,
shape, orientation and distance between patches intrinsically varies.
The patches are only locally aligned with respect to their neighbours
but not with respect to a global reference. A regular pattern is not
symmetric and cannot be cut into identical stripes or tiles.

Regular patterns can form through stochastic processes. A stochastic
process is a process where a variable or parameter is randomly per-
turbed by noise in time or space. Stochasticity hence does not imply
the absence or irrelevance of biophysical feedbacks, only its pertur-
bation. Stochastic patterns can be synthesized by introducing spatial
correlation into spatial noise. This can be facilitated by convolving
uncorrelated noise with the autocorrelation function of a stochastic
process, c.f. supplement sections 3.10 and 4.9. Suitable choices for the
autocorrelation functions are characteristic functions of common two-
parametric unimodal probability distributions, where the combination
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of the two parameters determines the length scale and degree of
egularity. It is unnecessary to add noise when synthesizing a random

regular pattern. We find that the autocorrelations of the natural pat-
terns in our example appear quite similar to that of synthesized random
regular patterns (Fig. 2ci, di), i.e. they oscillate with a rapidly decaying
amplitude. The synthesized regular spotted pattern has furthermore a
imilar annular structure as the natural regular pattern, in contrast to
he hexagonal structure of the periodic pattern. Stochastic processes
an also generate irregular patterns. The autocorrelation of irregular
atterns thus decays without oscillating (Pielou, 1964).

Despite its intuitive definition, the correlogram is not ideal for a
irect statistical analysis of spatial structures as it has undesirable
tatistical properties: The oscillation of the correlogram of a periodic
attern spuriously decays when it is cropped to a spatial extent that is
ot a multiple of its characteristic wavelength, c.f. supplement, section
.2. The oscillation also spuriously decays when the correlogram is
ransformed into radial coordinates for separating radial and angular
omponents of isotropic patterns, c.f. supplement 4.4. Harmonic fre-
uency components can further complicate the identification of the
haracteristic wavelength.

It is therefore desirable to analyse patterns with superior methods
han the correlogram. The distribution of patch size and patch spacing
s frequently employed for the studying spatial structures of environ-

mental spatial patterns (Kéfi et al., 2007; Bastiaansen et al., 2020).
However, they are unsuitable to determine if the spatial structure is
periodic or not as patch size and spacing can vary in regular patterns ir-
respectively if their spatial structure is periodic or not, as shown above.
We therefore base our analysis on the frequency spectrum, i.e. on the
periodogram 𝑆̂, as it does not suffer from the same shortcomings of
the autocorrelation, and is suitable for distinguishing regular stochastic
from periodic patterns.

1.2. Frequency spectra of regular patterns

The spectral density 𝑆 of a pattern shows the fraction of the spatial
variance contributed by each frequency component, c.f. supplement,
section 3.1. It contains the same information as the autocorrelation
function, in particular the information if a pattern spatial structure is
periodic or not, as both are the Fourier transform of each other. The
discrete analogue of the spectral density is the periodogram 𝑆̂, which
can be readily computed from an aerial image of a pattern. For stochas-
tic components, the periodogram values are random. Their mean and
variance is proportional to the spectral density. The periodogram does
not consistently estimate the spectral density (Parzen, 1957), as its
ariance does not decrease with the image size or resolution. However,
he spectral density can be consistently estimated by smoothing the

periodogram, c.f. supplement section 3.1.

1.2.1. Periodic patterns
The frequency spectrum of a periodic pattern is discrete as it consists

of well-separated narrow and high peaks at wavenumbers distinct
from zero (Jenkins and Priestley, 1957). The peaks correspond to the
frequency components of the pattern. The distance of the origin of each
eak determines the wavenumber and the angle its direction of each
requency component. The highest peak determines the dominant fre-
uency component and characteristic wavenumber 𝑘𝑐 = 2𝜋∕𝜆𝑐 . As the

pattern is real valued, each frequency component has two peaks of iden-
tical height mirrored with respect to the point of origin, i.e. separated
by 180◦. Axis-symmetric patterns, such as striped patterns, typically
have a pair of peaks with the radial wavenumber ±𝑘𝑐 . Spotted patterns
with hexagonal structure have six peaks with the radial wavenumber
𝑘𝑐 separated by 60◦ (Ouyang and Swinney, 1991). Harmonic frequency
omponents result in smaller peaks which are well separated from the
ain frequency components. When a pattern is cropped to a finite

patial extent and the spectrum is normalized to integrate to 1, then
 p

4 
the magnitude of the peaks 𝑆𝑝 are of the order 𝐿2 for two-dimensional
patterns in the square domain with area 𝐿2, c.f. supplement section 3.6.

Random perturbations such as varying patch size, spacing and
spatial noise introduce non-periodic frequency components. Noise typ-
ically consists of many frequency components so that the magnitude of
the individual frequency components is small, in particular for white
oise the magnitude 𝑆w is 𝐿2∕𝑛2 ((Kovačević and Djurović, 2008,

Chapter 2.5)), where 𝑛 is the number of independent pixels in the
mage. When periodic frequency components contribute the fraction
𝑞 to the total spatial variation and the noise the fraction 1 − 𝑞, then
the peak-to-noise ratio is 𝑆𝑝∕𝑆w = 𝑛2 𝑞∕(1 − 𝑞). The peak-to-noise
ratio is therefore high even when the spectral energy of the periodic
omponent is distributed over several components and the pattern is
onsiderably perturbed by noise, as the number of independent pixels
𝑛2 is typically large. Averaging the periodogram along one dimension
and normalizing its area to 1 results in peaks with magnitude 𝐿,
noise with magnitude 𝐿∕𝑛 and peak-to-noise ratio of 𝑛 𝑞∕(1 − 𝑞). The
frequency spectra of the plantation patterns appear quite similar to
the spectra of periodic patterns 1ciii, diii, with well-separated peaks of
the expected magnitude. However, the frequency spectra of the natural
regular patterns do not appear similar to that of periodic patterns,
as their spectral components are scattered and of lower magnitude
Fig. 1aiii, biii).

1.2.2. Regular patterns
A pattern is regular when its spectral density is lobed, where the

aximum of the lobe occurs at the characteristic wavenumber 𝑘𝑐 =
2𝜋∕𝜆𝑐 , and is well separated from zero (𝑘𝑐 > 0). This corresponds to
our definition in Section 1.1.2, where we define regular patterns as
patterns where the autocorrelation oscillates with decaying amplitude.
This can be shown by determining the spectral density from the au-
tocorrelation via the Fourier transform, c.f. supplement, section 4.1.
Consequently, the frequency components of regular stochastic patterns
are randomly scattered in a region around the characteristic wavenum-
ber 𝑘𝑐 (Fig. 2ciii, diii) instead of being concentrated in peaks. For
anisotropic patterns, e.g. striped patterns, the frequency components
are scattered in two regions with radial wavenumber 𝑘𝑐 separated
by 180◦ and for isotropic, e.g. spotted, patterns in an annular region

ith radius 𝑘𝑐 . The periodogram of isotropic stochastic patterns thus
oes not have axes of preferential patch alignment. The magnitude of
requency components near the characteristic wavenumber is typically
uch smaller than that of a periodic pattern 𝐿2 but much larger

han that of white noise (𝐿∕𝑛)2. In contrast to periodic patterns, the
agnitude also does not depend on the spatial extent of the pattern.

When the periodogram is smoothed to reveal the underlying density,
then the density appears to be lobed, not peaked, i.e. it decays gradually

ith increasing distance from the local maximum at the characteristic
avenumber. The frequency spectrum of a regular stochastic pattern

an be synthesized as the product of an unimodal, i.e. lobed, probability
ensity and uncorrelated noise, or conversely by taking the Fourier
ransform of a pattern generated by convolving uncorrelated noise
ith the characteristic function of the probability distribution, c.f.

upplement section 4.1. We find that the frequency spectra of the
atural patterns (Fig. 1aiii, biii) are quite similar to the spectra of
egular random patterns synthesized in this manner (Fig. 2ciii, diii). We
ote that irregular patterns have a lobed spectral density where the
aximum of the lobe occurs at the zero wavenumber (Pielou, 1964).

o that the frequency components of the periodogram are randomly
scattered around the origin.

1.3. Relation between periodic and regular patterns

Periodic and irregular patterns are limit cases of regular patterns.
 pattern is periodic, when the autocorrelation oscillates with constant
mplitude, and correspondingly, when its spectral density consists of
eaks well separated from the zero wavenumber. A pattern is irregular,
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Fig. 2. (ai, bi) Synthetic periodic patterns perturbed by added spatial noise, varying patch size and spacing. (aii, bii) The correlogram reveals the periodic, i.e. repeating structure,
through its oscillation at the characteristic wavelength. (aiii, biii) The spectral energy is concentrated in well-separated peaks at the characteristic wavenumber. (ci, di) Synthetic
regular random patterns generated by a stochastic process following a gamma-distribution. (cii, dii) The correlogram oscillates but the oscillation decays. (ciii, diii) The spectral
energy is scattered in a region around the characteristic wavenumber. Note the similarity between the natural regular patterns in Fig. 1 and the synthesized regular random patterns
and dissimilarity with the synthesized periodic patterns. All patterns were generated in a square domain with side length 𝐿 = 20𝜆𝑐 , where 𝜆𝑐 is the characteristic wavelength of
the pattern, and pixel side length 𝛥𝑥 = 𝜆𝑐∕20, resulting in comparable spatial and spectral resolution. For display, the patterns have been thresholded and cropped to a side length
of 10 𝜆𝑐 .
when the autocorrelation decays gradually, i.e. does not oscillate, and
correspondingly, when the lobe of the spectral density is centred at the
origin. A periodic pattern is therefore regular, but a regular pattern
is not necessarily periodic. Similarly, deterministic processes are a
limit case of stochastic processes where the random perturbations are
negligible. Whether a pattern is periodic or not is therefore relevant
for the pattern formation. When regular environmental spatial patterns
have a periodic spatial structure, then the structure can be well repro-
duced with deterministic models and the variation of patch properties
can be considered as extraneous. However, if the spatial structure is
not periodic, then the influence of stochastic processes, i.e. noise, on
the pattern formation is not negligible, and the variation of patch
properties is intrinsic.

Both the autocorrelation structure and frequency spectrum of the
two regular natural patterns in our example indicate that they are reg-
ular, but nor periodic. To substantiate this finding, we revisit statistical
tests for periodicity in the following section.

2. Testing for periodicity

The dichotomous questions if the spatial structure of a pattern is
periodic or not can be decided with a statistical test. Periodicity is
typically shown by refuting the null hypothesis that the magnitude of a
frequency component of the periodogram 𝑆̂ is significantly larger than
the value expected for spatial noise with spectral density 𝑆𝑠:

max
(

𝑆̂
𝑆𝑠

)

> 1
2
(

𝜒2
2
)−1 (1 − 𝛼) = − ln 𝛼 . (1)

c.f. Li (2013), where 𝜒2
2 is the Chi-squared distribution with two-

degrees of freedom. We interpret the spectral density as a probability
5 
density and the autocorrelation function correspondingly as its charac-
teristic function. For this, we normalize the volume of the periodogram
𝑆̂ and consequently of the density 𝑆 to 1. This does not affect the
test as the normalization cancels in the ratio 𝑆̂∕𝑆𝑠, though it facili-
tates comparing the spectrum with common probability densities. 𝛼 is
the confidence level for accepting the frequency component as being
periodic. In a set of patterns conforming to the null level model,
i.e. consisting entirely of spatial noise, the expected fraction of patterns
with significant frequency components (Type-I Error), is identical to the
confidence level 𝛼.

When the noise is white, then the spectral density 𝑆𝑠 is flat, and
for a pattern sampled along a transect (𝑑=1) or square domain (𝑑=2)
with side length 𝐿 at 𝑛-grid points spaced in equal distance along each
dimension the density is, c.f. supplement section 3.7:

𝑆w =
(𝐿
𝑛

)𝑑
. (2)

In this case, the narrow and isolated peaks of the discrete spectra
of the periodic pattern rise high above the flat noise spectrum. The test
only assesses if a frequency component exceeds the threshold in Eq. (1).
It does not assess how well a periodic function describes the frequency
spectrum of a pattern. This can be assessed by the fraction of the spatial
variance contributed by the significant frequency components.

Periodicity could also be tested by other means, for example based
on the autocorrelation. A test of the autocorrelation will lead to the sim-
ilar result as a test of the periodogram, as both are the Fourier transform
of each other, and thus contain identical information, c.f. supplement
section 4.1. We conduct our analysis based on the periodogram, due to
its preferential statistical properties.
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2.0.1. Fraction of patterns with periodic frequency components
A test only assesses if a pattern contains significant components.

It cannot determine if a significant frequency component originates
rom a deterministic process and is periodic, or if it stems from a
tochastic process and just exceeds the critical value by chance. While
t is not possible to determine the origin of a significant frequency
omponent for a single pattern, it is possible to determine the fraction
f patterns with periodic components stemming from deterministic
rocesses by testing a large number of patterns. When the periodic and
tochastic parts are uncorrelated, then the total fraction of patterns with
ignificant frequency components 𝑐 is:

𝑐 = 𝑎 + 𝑏 − 𝑎 ⋅ 𝑏, (3)

where 𝑎 is the fraction of patterns where a frequency component of
the stochastic part is significant, 𝑏 is the fraction of patterns where a
eriodic frequency component stemming from a deterministic process

is significant, and 𝑎 ⋅ 𝑏 is the fraction of patterns with both significant
stochastic and deterministic frequency components. The fraction of
patterns with significant deterministic frequency components is thus:

𝑏 = 𝑐 − 𝑎
1 − 𝑎

. (4)

The expected fraction of patterns with significant stochastic compo-
nents is 𝐸[𝑎] = 𝑃 (𝑝 < 𝛼) = 𝛼 so that 𝐸[𝑏] = (𝑐 − 𝛼)∕(1 − 𝛼). For the
arbitrary choice 𝛼 = 0.05, 5% of all stochastic patterns have significant
requency components. As 𝛼 is small, 𝑏 ≈ 𝑐 − 𝛼, and comparing the
raction of patterns with significant frequency components 𝑐 against
he confidence level 𝛼 will indicate the fraction of patterns containing
eriodic components originating from deterministic processes. As the
ataset is finite, the number of stochastic patterns with significant
requency components varies randomly around the expected value 𝛼.
he standard error se(𝑎) is se(𝑎) = √

𝛼(1 − 𝛼)∕𝑛, when 𝑛 patterns are
ested. For drawing a significant conclusion, a sufficiently large number
f patterns, say at least 100, has to be tested.

2.0.2. Accounting for multiple comparisons
Eq. (1) is for testing a single predetermined frequency component

for significance. It is suitable for testing for the presence of a spectral
line of a particular chemical element in the light of distant stars, or
the presence of a particular tidal constituent in a water level record. In
the case of a natural pattern, the dominant frequency component is not
known a priori, but determined from the data. The test thus consists of
multiple comparisons, as the null hypothesis is only not rejected, i.e. the
pattern is classified as having no periodic frequency component, when
all periodogram values fall below the threshold 𝛼.

Multiple comparisons have to be accounted for by reducing the
value of the confidence level 𝛼 with the Bonferroni correction (Li,
2013). This in turn results in a higher critical value for a pattern to
be classified as periodic. When 𝑛𝑡 periodogram bins are tested in total,
then the modified value 𝛼𝑛𝑡 to be used for the test is:
𝛼𝑛 = 1 − (1 − 𝛼1)1∕𝑛𝑡 ≈

𝛼1
𝑛𝑡

, (5)

where 𝛼1 is the desired confidence level. Since the periodogram is
symmetric, only half the frequency components have to be tested so
that 𝑛𝑡 = 𝑛∕2 for transects and 𝑛𝑡 = 𝑛2∕2 for square domains. As 𝑛
is typically large, 𝛼𝑛 ≪ 𝛼1 so that most stochastic patterns will be
misclassified as periodic when 𝛼1 instead of 𝛼𝑛 is used when testing,
c.f. Fig. 3.

The Bonferroni correction is essential for a periodicity test. It is
therefore usually applied in statistical textbooks without being explic-
tly mentioned (Percival et al., 1993, ch. 10.9). It is also not mentioned
n previous studies where environmental spatial patterns have been

tested (Couteron, 2001; Couteron et al., 2006). However, it is also not
pplied, as is evident from the example in Renshaw and Ford (1984),

on which the later publications are based on: For a pattern sampled
on a square 32 × 32 grid and a confidence level of 𝛼 = 0.05, they use
he critical value of 0.0059 = (

𝜒2)−1 (1 − 0.05)∕322 relative to the total
2

6 
Fig. 3. Periodogram of a one-dimensional pattern consisting of white noise. The line
95%-1 indicates the level exceeded by 5% of all frequency bins, testing against this
level misclassifies almost all patterns as periodic. The line 95%-𝑛 indicates the corrected
level exceeded by the maximum value of all frequency bins within 5% of all patterns.
None of the frequency components in the example exceeds the corrected level. With
the Bonferroni correction, the pattern is thus correctly classified as not periodic.

variance. The spatial extent of the pattern 𝐿 is not required for testing,
as the normalization cancels from the tested ratio, c.f. equation (1).
 frequency component is significant when its magnitude exceeds the
ritical value. 5% of all frequency components of white noise exceed

this critical value, and consequently nearly all patterns consisting of
white noise are misclassified as periodic, as each pattern has 322∕2 =
512 independent frequency components (1 − (1 − 0.05)512 ≈ 1). The
orrect critical value is 0.018 = (

𝜒2
2
)−1 (1 − 0.05∕512)∕322 for which

nly 5% of all patterns consisting of white noise are misclassified
1 − (1 − (0.05∕512))512 ≈ 0.05), in agreement with the confidence
evel 𝛼.

2.0.3. Arbitrary noise spectra
Another caveat when testing for periodicity is that it requires the

spectral density of the spatial noise to be known for the null model. Pre-
vious studies assume that the noise is uncorrelated (white noise), which
corresponds to a flat spectral density (equation (2)), (Mugglestone and
Renshaw, 1998; Couteron, 2001, 2002; Couteron et al., 2006; Kefi
t al., 2014), or coloured noise (Barbier et al., 2010) which have

no local maxima. Noise results from stochastic processes and can be
superimposed to a pattern, such as photon noise stemming from the
mage acquisition, but it can also be inherent to a pattern when it

results from stochastic processes in the pattern formation. Photon noise
is white but its magnitude is usually negligible in high-quality images.
n contrast, the spectrum of a typical natural vegetation pattern has a

strong stochastic component in the form of a wide lobe (Fig. 1a, b).
Testing the periodogram of a pattern with a lobed spectrum against
he flat spectrum of white noise strongly inflates the number of false
ositives.

Consequently, the periodogram has to be tested against the lobed
pectrum of the noise. The spectral density of the noise is not known,
hough it can be estimated, for example by fitting a particular paramet-

ric density model. To avoid the complications that arise from selecting
and fitting an appropriate density model, we estimate the density
non-parametrically, by suppressing the noise in the periodogram by
smoothing. Replacing the density 𝑆𝑠 with its estimate 𝑆̄ changes the test
statistics, as the ratio 𝑆̂∕𝑆̄ is not 𝜒2-distributed. When the smoothing
window consists of 𝑚 bins of equal weight, the ratio is Beta-distributed
(c.f. supplement section 6.1):
𝑆̂
𝑆̄

∼ 𝑚 𝐵1,𝑚−1. (6)

This approaches the 𝜒2-distribution for large 𝑚. The 𝑝 value of the test
s thus

(

1 − 𝐵1,𝑚−1
(

𝑆̂∕
(

𝑚 𝑆̄
)))𝑛, where 𝐵1,𝑚−1 is the cumulative Beta-

distribution and 𝑚 the total number of frequency bins of the smoothing
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Fig. 4. (a) Spectral density 𝑆 (black) of a one-dimensional pattern consisting of a periodic component with peaked density and a stochastic component (spatial noise) with
obed density. The density is normalized by the density of white noise 𝑆w. The pattern is artificial and has been synthesized for illustration. (b) Periodogram 𝑆̂ of the pattern.
he magnitude expected for white noise is not only exceeded by the frequency component associated with the periodic component, but also where the density of the stochastic
omponent is high. (c) Periodogram of the pattern normalized the estimated spectral density of the stochastic component 𝑆̄, only the periodic component remains significant.
orizontal lines indicate confidence levels as in Fig. 3.
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window. Here, we smooth the periodogram within a circular window
ontaining 𝑚 bins with equal weights. Testing against the estimated

density brings the number of false positives (Type-I errors) close to the
expected value (Fig. 4). The maximum 𝑆̂∕𝑆̄ occurs at the wavenumber
of the periodic frequency component with largest magnitude, if such
a component is present. Otherwise, the maximum 𝑆̂∕𝑆̄ occurs at a
andom wavenumber, i.e. not necessarily at the wavenumber where the
pectral density of the stochastic part 𝑆𝑠 reaches its maximum, because
he normalization with 𝑆̄ flattens the spectrum.

We note that it is unnecessary to separate the deterministic from the
stochastic part of the spectrum for the test. We test the ratios 𝑆̂∕𝑆̄ of
the periodogram 𝑆̂ with the estimated density 𝑆̄ of the total spectrum.
𝑆𝑠 potentially contains smoothed periodic components in addition to
the noise. This avoids a circular dependency on the determination
of periodic components. It does not considerably reduce the power
of the test as long as periodic frequency components are isolated.
However, the test is biased for highly regular stochastic patterns as
the lobe of their spectral density is narrow. Estimating the density
by smoothing results in an underestimation of its maximum of 𝑆̄ and
an overestimation of the maximum ratio 𝑆̂∕𝑆̄ so that more stochastic
patterns are marked to contain significant frequency components than
expected by chance, c.f. numerical experiment in supplement section
6.5. The bias can only be substantially reduced by increasing the area
over which a pattern is sampled. As the spatial extent of most patterns
is not large, the test is biased. This has to be accounted for when
evaluating the test result.

2.0.4. Arbitrarily pattern extents
The computation of the periodogram requires a pattern in a rectan-

ular domain. Natural patterns usually do not extend over rectangular
omains. They could be processed by clipping an aerial image to
he largest rectangle fitting into the pattern. However, this is not
atisfactory for striped patterns that grow in long and narrow valleys.

In such cases the patterns are long, as many stripes occur along the
valley, but the individual stripes are short, as their length is limited
to width of the valley, c.f. patterns in Gandhi et al. (2018). Clipping
an image to the interior extent of such a pattern results in a small
image covering only a small part of the pattern. We therefore crop
the image to the bounding box of the pattern, i.e. to the smallest
rectangle fitting around the pattern. We exclude the area in the image
not belonging to the pattern by masking, i.e. by setting the value
f the pixels outside the area occupied by the pattern to the mean

value of the pixels in the area occupied by the pattern. While this
approach avoids clipping the pattern, the values of the periodogram
cease to be statistically independent such that Eq. (6) does not hold
any more. Therefore, we approximate the quantiles of the test statistic
by Monte-Carlo-Simulation, c.f. supplement, section 6.2.
7 
We verified the test, including the estimation of the non-flat spectral
density and correction for multiple testing, with numerical experi-
ments for Type-I and Type-II errors and found that it detects periodic
components reliably even when the periodic component contributes a
smaller fraction to the spatial variance of the pattern than the noise.
We note that without the corrections, the number of false positives is
unacceptably large, i.e. the test will misclassify almost all stochastic
patterns as periodic. We provide a step-by-step instruction of the testing
procedure in section 6.2 of the supplement.

2.0.5. Testing of average spectra
Several studies do not directly test the two-dimensional periodogram

or significant frequency components. Instead, they test the
eriodogram after averaging along one-dimension (van de Koppel

et al., 2005; Kefi et al., 2014). For isotropic (spotted) patterns, the
eriodogram is first transformed into radial coordinates before aver-
ging (Couteron and Lejeune, 2001). Such tests can only determine if a

pattern is regular or not, i.e. that the spectral density of the pattern is
not flat, but not that a pattern contains periodic frequency components,
as an average of the periodogram resembles a density estimate. Other
tudies test the autocorrelation function has a maximum that is signif-
cantly greater than zero (Weerman et al., 2010; van de Vijsel et al.,

2020). Again, such tests can only determine if a pattern is regular or
not, as for periodic patterns the amplitude of the autocorrelation is not
ust non-zero zero, but also does not decay. We note that both (van de
Koppel et al., 2005) and van de Vijsel et al. (2020) consistently with
ur terminology describe their patterns as regular, and not as periodic.

3. Application of the test to regular environmental spatial pat-
terns

We compiled a large global dataset of regular environmental spatial
patterns due to the lack of a sufficient reference dataset. We included
regions where regular spatial patterns were previously reported and
regions with similar climate (Deblauwe et al., 2008; Borgogno et al.,
2009). The regions consist of drylands in Australia, Africa and North-
rn America, and wetlands in central Africa. We manually identified
atterns on the Google Satellite base map and delineated their spatial
xtent with polygons enclosing parts of patterns over which the patch
ize, spacing and orientation remain similar, c.f. Fig. 5b.

We automated the processing of the aerial images: First, the aerial
image within the bounding box of a pattern is fetched and the area

ithin the circumscribing polygon is masked. The spatial resolution
of the image is adjusted between 4 m and 0.5 m depending on the
pectrum. We keep the images in the pseudo-Mercator projection

(EPSG:3857) provided by Google as it preserves angles and thus the
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spatial structure over small areas. The scale distortion of the projection
oes not affect the spatial structure and remains limited since our
ataset does not contain patterns in extreme latitudes. Images are
onverted to greyscale, with brighter areas corresponding to bare
round and darker areas to vegetation. Google Satellite imagery does
ot provide an infrared band for determining the NDVI, but it has
 far higher spatial resolution compared to other publicly accessible
lobal satellite imagery like Landsat which have near-infrared bands.
ince we are interested in the spatial structure, not the total biomass,
he superior spatial resolution is preferable over NDVI. The images
hen undergo quality control. Images where the dominant length scale
annot be clearly identified, images with patterns that are not strongly
egular, or where the identified length scale is outside the range
etween 1 m and 500 m are discarded. The patterns are then grouped
ccording to the world region they are located in.

At first, we inspect the autocorrelation structure and spectral density
f the patterns. For this, we average the correlogram and periodogram
n the direction perpendicular to stripes for anisotropic patterns and
ver equal angles after a transformation into polar coordinates for
sotropic patterns. We normalize the axes by their characteristic scales,

distances by 𝜆𝑐 and wavenumbers by 𝑘𝑐 respectively, leading to graphs
with unit-scale which can be directly compared and averaged. In po-
lar coordinates, the cosines of the autocorrelation are transformed
into Bessel-functions. The Bessel-functions oscillate with decaying am-
plitude even if the underlying pattern has periodic, i.e. hexagonal
structure. This is because a periodic pattern only repeats along one of
its axes of symmetry, while the transformation into radial coordinates
averages over all directions. The transformation also slightly shifts the
location of the first maximum of the autocorrelation. We compensate
for the spurious decay of the radial autocorrelation by dividing it with
the amplitude of the Bessel function, but we do not compensate for
the shift, c.f. supplement 4.4. We then determine how well particular
models fit the spectral density of the patterns, starting with the discrete
spectrum of periodic patterns stemming from deterministic processes,
as well as common unimodal densities stemming from stochastic pro-
cesses, including the normal, log-normal and gamma-distributions. We
fit the densities by minimizing the Hellinger distance 𝐻 𝐷, and measure
the goodness of fit by the coefficient of determination, here defined as
𝑅2 = 1 − 2𝐻 𝐷, c.f. supplement section 5.4.

Finally, we test the spectra for significant frequency components
ith the amended procedure (Supplement section 6.2), adopting a

ignificance level 𝛼 = 0.05. We compare the fraction 𝑃 of patterns
ontaining significant frequency components against the fraction of
% expected for stochastic patterns, and assess the fraction of spatial
ariance contributed by significant components.

We determine the fractions by the total number of patterns per
group, regardless of the spatial extent of each pattern, i.e. small and
arge patterns are equally weighted. Weighting the patterns by their

surface area yields similar results. We limit the periodicity test to the
requency range which contributes most of the spatial variance, and
xclude spurious low and high frequency components, c.f. Fig. 5c.

3.1. Fraction of patterns classified as periodic

We delineated more than 5514 anisotropic patterns, mostly striped,
and more than 4817 isotropic patterns, primarily spotted. 2534 (46%)
anisotropic and 3301 (69%) isotropic patterns passed the quality con-
trol and entered the analysis. The autocorrelations mark both the
anisotropic and the isotropic patterns as clearly regular, as they os-
cillate at the characteristic wavelength 𝜆𝑐 (Fig. 6ai, bi). However, the
autocorrelations show that the patterns are quite far from periodic
as the oscillations are strongly damped, so that the first maximum
𝑅𝑐 of the autocorrelation is far from 1, which is the expected value
for periodic patterns. The spectral densities confirm the regularity of
patterns, as all of them have a distinct maximum at the characteristic
wavenumber 𝑘 (Fig. 6a , b ). The densities also confirm that the
𝑐 ii ii W
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patterns are far from periodic as they consist of a wide lobe instead
of narrow peaks. There are also no peaks superimposed on the lobed
density, which would indicate the presence of hidden periodicities.
The discrete density of a striped periodic or respectively a hexagonal
periodic pattern does not fit the spectral density of most environmental
spatial patterns well, with a median 𝑅2 of −0.88 for anisotropic and
−0.91 for isotropic patterns (Fig. 6aiii, biii). In contrast, common uni-
modal parametric densities associated with stochastic processes fit the
spectral density well, with median 𝑅2 above 0.92 for anisotropic and
above 0.95 for isotropic patterns.

To be certain that the patterns are not periodic, we apply the
mended test. The median 𝑝-value of all isotropic patterns is 0.55, and

of anisotropic patterns 0.49, indicating that most patterns are far from
aving a significant frequency component.

At a significance level of 0.05, 4.5% (113/2534) of the anisotropic
atterns and 4.79% (158/3301) of the isotropic patterns have signifi-
ant frequency components, close to the expected fraction of 5%. We
ote that it is not meaningful to determine a particular fraction of
atterns with periodic frequency components when the patterns are
tochastic, as the number of patterns with significant frequency compo-
ents is close to the confidence level, which can be arbitrarily chosen.
n our case, we chose the confidence level 0.05 for which we expect
% of patterns to have significant frequency components. However,
e can compare the fraction of patterns with significant frequency

omponents against the expected fraction. If there would be patterns
ith periodic components originating from deterministic processes,

he fraction of patterns with significant components would exceed the
raction expected for stochastic patterns. In our dataset, the fraction of
atterns with significant frequency components ranges between 3% and
% and does not considerably deviate from the expected value of 5%
n any of the world regions (Fig. 7). There are thus not more patterns
ith significant frequency components than expected by chance. In
ddition, there is no world region where a sizeable fraction of patterns

is classified as periodic. This result does not depend on the arbitrary
threshold of 𝑝 = 0.05. For the threshold 𝑝 = 0.01 the result is similar:
or 1.03% (46/2534) of the anisotropic patterns and 0.82% (28/3301)

of the isotropic patterns the 𝑝-value falls below the threshold, compared
to the expected fraction of 1%.

Beside the fraction of patterns with significant components, it is
lso relevant how much of the spatial variance of those patterns is
xplained by the significant frequency components. The fraction of

spatial variance is identical to the fraction of spectral energy, i.e. the
alue of the spectral density of significant components. We find that
ignificant frequency components only contribute a small amount of the
otal spectral energy of the respective patterns, on average only 0.26%

for anisotropic and 0.58% for isotropic patterns at a 0.05 confidence
level. For this reason, patterns with significant frequency components
do not appear visually different, in particular not more regular than
other patterns. For periodic patterns, the fraction of spectral energy
contained in significant frequency components is considerably larger.
For example, in the periodic plantations in Fig. 1, significant frequency
components contain 49% of the spectral energy of the striped pattern
nd 30% of the spectral energy of the hexagonal pattern. For all
atterns in our dataset the energy contained in the stochastic com-
onents, i.e. non-significant components, vastly exceeds the spectral
nergy contained in the significant frequency components identified by
he periodicity test. Our dataset thus does not contain any patterns that
an be classified as periodic.

While the overall result of our analysis is unambiguous, several
factors might slightly influence the result. One factor is that patterns
have been manually identified and delineated. Considering that our
ataset comprises more than 8900 patterns on three continents, it is
nlikely that testing other patterns or slightly changing the delineation
esults in a different conclusion. We note that our results also hold for
n extended dataset including patterns in Asia and Southern America.

e did not include the two continents in our analysis as to our
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Fig. 5. (a) World regions where patterns were sampled. (b) An anisotropic dryland vegetation pattern in, near Burtinle, Somalia (47.9261◦N 7.7911◦N, Imagery 2023 Maxar
Technologies and Google). The red polygon indicates the area masked for the periodicity test. The blue bar indicates the characteristic wavelength 𝜆𝑐 =

2𝜋
𝑘𝑐

. (c) Schematic radial
spectral density 𝑆𝑟 with spurious frequency components (solid) and after suppressing them (dashed). The dashed lines indicate the frequency range tested for periodic components,
excluding spurious low and high frequency components (supplement section 5.3). We test for periodic components in the frequency range between the local minimum of the
density 𝑆𝑟 and the 80th-percentile of the cumulative distribution 𝐶𝑟 (supplement section 3.4).
best knowledge there are no publications on regular patterns in the
respective regions which would allow us to verify that those patterns
indeed consist of vegetation. Another factor is that we retain only
about half the patterns in the dataset after the quality check. This is
because we only include highly regular patterns in the test. Including
the less regular patterns does not change the result. It is also possible
that some patterns in our dataset do not consist of vegetation, or did
not form through self-organization. The fraction of such patterns is
likely small, at least for the regions where the presence of regular
vegetation patterns has already been established by previous studies.
Another factor is that the 𝑝-value is sensitive to the smoothing radius
chosen for estimating the density. A wider smoothing radius introduces
the aforementioned bias so that slightly more patterns are flagged to
contain significant frequency components. However, this bias is not
large, as long as the smoothing radius is chosen consistently, i.e. as long
as the spectrum is not oversmoothed to become flat, c.f. supplement
section 6.5.

4. Discussion and conclusion

To determine if regular vegetation patterns are periodic, we com-
pile and analyse a large dataset of isotropic, mostly spotted, and
9 
anisotropic, mostly striped, patterns. We find that the spatial structure
of the patterns is dissimilar to that of periodic patterns. The oscillation
of the autocorrelation decays rapidly instead of remaining constant
like that of periodic patterns. Correspondingly, the spectral density
is continuous instead of discrete like that of periodic patterns. We
also show that the lack of a periodic structure cannot be explained
by a mere variation of patch size, distance between patches or added
spatial noise. The statistical test reveals that no more patterns have
significant frequency components than expected by chance, and that
significant frequency components only explain a negligible part of the
spatial variance of a pattern, in case of the few patterns which have
significant frequency components at all. In other words, not even a
small subset of patterns is periodic, i.e. forming predominantly through
deterministic processes. We find that the autocorrelation and spectrum
of environmental spatial patterns is similar to patterns originating from
stochastic processes. Spatial patterns synthesized by simple stochastic
processes (Fig. 2ci,di) can also appear similar to regular environmental
spatial patterns (Fig. 1ai, bi). We emphasize that the patterns generated
by a stochastic process can be regular and random at the same time, as
the state at each point is random but the spatial correlation between
the points makes it regular.

Our findings suggest that it is not meaningful to consider regular-
ity as a dichotomous property and to classify environmental spatial
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Fig. 6. (ai) Autocorrelation and (aii) spectral density of anisotropic patterns in the direction perpendicular to the stripes, estimated by averaging over all patterns. Stars indicated
the median and the end of sticks the 5th and 95th percentiles of the local maximum. (aiii) Goodness of fit of parametric densities to the empirical spectral density in the direction
perpendicular to the stripes. Stars indicated the median and the end of sticks the 5th and 95th percentiles of the fit to individual patterns. (bi) Autocorrelation and (bii) spectral
density of isotropic patterns in radial direction. The decay introduced to the autocorrelation by the transformation into polar coordinates is compensated for. (biii) Goodness of fit
of parametric densities to the empirical radial spectral density.
Fig. 7. Fraction 𝑃 of (a) isotropic and (b) anisotropic patterns classified as periodic (𝑝 ≤ 0.05). The numbers indicate the number of patterns in each region. The horizontal
indicates the expected fraction of stochastic patterns which are classified as periodic by chance (5%). Error bars indicated the two sided 95% confidence interval determined with
the Clopper–Pearson method (Ross, 2003).
patterns based on a periodicity test. Instead, regularity should be
understood as a continuous variable, falling somewhere between the
limit cases of irregular patterns, with no finite length scale on one end
and periodic patterns on the other end. As regular spatial patterning
is related to ecosystem functioning and resilience (Pringle et al., 2010;
Liu et al., 2014; Bonachela et al., 2015; Rietkerk et al., 2021), there is
a need for quantifying regularity beyond a binary classification. While
the 𝑝-value of the statistical test takes continuous values between 0
and 1, its value for stochastic patterns is random irrespectively of their
regularity. A different approach than statistical testing is thus required,
which is in line with the general trend to move away from statistical
testing (McShane et al., 2019; Wasserstein et al., 2019; Anderson et al.,
10 
2000). Any measure should appreciate the full spectrum of environ-
mental spatial patterns in form of a probability distribution (Borgogno
et al., 2009; Meron, 2015), i.e. go beyond analysing the characteristic
wavelength.

The attribution of periodicity might stem partially from imprecise
terminology, which in itself is trivial. However, it does have implica-
tions for modelling, as environmental spatial patterns are commonly
studied with deterministic reaction–diffusion models which tend to gen-
erate periodic patterns (Klausmeier, 1999; Rietkerk and van de Koppel,
2008). Conventional reaction diffusion models are highly idealized and
thus cannot be expected to reproduce all aspects in detail. Our findings
indicate that deterministic models of vegetation patterns which tend
to generate periodic patterns cannot reproduce the spatial structure of
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regular vegetation patterns. This does not necessarily imply that the
conclusions drawn from these models about ecosystem functionality
and resilience are invalid. However, we think that care should be taken
s the spatial structure has been suggested as an indicator of ecosystem
ealth and function (Rietkerk et al., 2004; Yizhaq et al., 2005; Kéfi

et al., 2010b).
Some deterministic systems can behave chaotically and generate

non-periodic patterns (May, 1976; Devaney, 2018). While reaction–
iffusion models commonly used for studying vegetation patterns could

be modified to behave chaotically, this would require different parametr
tions or processes than those which are currently understood to be
physically plausible and relevant. Instead, we propose that noise,
i.e. random spatial exogenous heterogeneities, influences the pattern
formation, which turns the pattern formation from a deterministic into
 stochastic process yielding regular patterns which fall short of being
eriodic. Conventional reaction diffusion models can be made more
ealistic by incorporating more biophysical processes in greater detail
r accounting for temporal variation (Siteur et al., 2014; Gandhi et al.,

2023). We advocate for not overlooking exogenous spatial heterogene-
ity here as deterministic models cannot reproduce the spatial structure
of natural patterns, irrespectively of their complexity.

A few studies have demonstrated that noise can trigger the forma-
ion of regular patterns in ecosystems without scale-dependent feed-
acks (Borgogno et al., 2009). While such stochastic models generate

patterns which can appear more natural, they still do not mimic the
underlying physical processes as the reaction–diffusion models do.
We think that the key to reproducing natural patterns is to combine
the deterministic and stochastic models, i.e. to integrate noise into
reaction–diffusion models, rather than by superimposing it to model-
generated patterns. Sources of spatio-temporal noise are numerous,
and have in an ad-hoc manner been integrated in several studies, for
example through the seed distribution (Pueyo et al., 2008; Realpe-
Gomez et al., 2013), and extraneous spatial heterogeneities (Yizhaq
et al., 2014; Yizhaq and Bel, 2016; Yizhaq et al., 2017; Castillo Vardaro
t al., 2021). The role of spatio-temporal noise in pattern formation and
ts consequences for the functioning and resilience of pattern forming

ecosystems needs to be studied in a more systematic way.
We present an analysis of regular dryland vegetation patterns here,

as it is possible to compile a large dataset from satellite imagery. We
note that we obtained similar results for a smaller set of regular patterns

hich are in other ecosystems including sea grass, mussel banks and
lgal mats. We therefore think that our results can be generalized

to spatial biomass patterns which form through feedbacks with their
underlying soil matrix. Patterns forming free of a supporting matrix,
such as the honeycombs made by bees (Apis melifera), or patterns not
in feedback with the supporting matrix, such as mega colonies of the
great cormorant (Phalacrocorax carbo), or patterns that are too small
to be affected by spatial heterogeneity, such as in Paleodictyon, can be
periodic. This indicates that soil spatial heterogeneity likely plays a key
role in the formation of environmental spatial patterns.
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Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.catena.2024.108442.

Data availability

Computer scripts for fetching satellite images of the patterns from
he Google maps server and for analysing them, geospatial input files

and test result for each pattern are available at: https://github.com/
karlkastner/environmental-spatial-patterns-periodicity-test. A snapshot
f this repository which includes required library files is available
t: https://zenodo.org/records/13695204. An interactive map of the
ataset is available at: https://www.riverdolphin.xyz/vegetation-patte

rns.html (requires IPv6).
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