001033954 001__ 1033954 001033954 005__ 20241213210711.0 001033954 0247_ $$2doi$$a10.25493/KNSN-XB4 001033954 037__ $$aFZJ-2024-06792 001033954 1001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b0$$eCorresponding author 001033954 245__ $$aJulich-Brain Atlas, cytoarchitectonic maps 001033954 260__ $$bEBRAINS$$c2024 001033954 3367_ $$2BibTeX$$aMISC 001033954 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1734067797_20227 001033954 3367_ $$026$$2EndNote$$aChart or Table 001033954 3367_ $$2DataCite$$aDataset 001033954 3367_ $$2ORCID$$aDATA_SET 001033954 3367_ $$2DINI$$aResearchData 001033954 520__ $$aThe Julich-Brain Atlas (RRID:SCR_023277) presents in this dataset cytoarchitectonic maps in several coordinate spaces, such as MNI Colin 27, MNI ICBM 152, and Free Surfer FsAverage-7. These maps originate from peer-reviewed probability maps (PMs) that define both cortical and subcortical brain regions. Notably, these probability maps account for the brain's inter-individual variability by analyzing data from ten post-mortem samples. For a whole-brain parcellation, the available probability maps are combined into a maximum probability map (MPM) by considering for each voxel the probability of all cytoarchitectonic brain regions, and determining the most probable assignment. The atlas was used as a reference atlas for the Human Brain Project and is deeply embedded within the European research infrastructure platform, EBRAINS. Furthermore, the atlas is continuously evolving and regularly updated with new areas. The [siibra toolsuite](https://siibra-python.readthedocs.io) provides an automated access to the Atlas, to speed up your work. 001033954 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0 001033954 536__ $$0G:(EU-Grant)101147319$$aEBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)$$c101147319$$fHORIZON-INFRA-2022-SERV-B-01$$x1 001033954 588__ $$aDataset connected to DataCite 001033954 650_7 $$2Other$$aNeuroscience 001033954 7001_ $$0P:(DE-Juel1)131660$$aMohlberg, Hartmut$$b1 001033954 7001_ $$0P:(DE-Juel1)131636$$aBludau, Sebastian$$b2 001033954 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b3 001033954 7001_ $$0P:(DE-HGF)0$$aLewis, L. B.$$b4 001033954 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b5 001033954 7001_ $$0P:(DE-Juel1)131666$$aPieperhoff, Peter$$b6 001033954 773__ $$a10.25493/KNSN-XB4 001033954 909CO $$ooai:juser.fz-juelich.de:1033954$$popenaire$$pVDB$$pec_fundedresources 001033954 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b0$$kFZJ 001033954 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131660$$aForschungszentrum Jülich$$b1$$kFZJ 001033954 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131636$$aForschungszentrum Jülich$$b2$$kFZJ 001033954 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b3$$kFZJ 001033954 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b5$$kFZJ 001033954 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b5 001033954 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131666$$aForschungszentrum Jülich$$b6$$kFZJ 001033954 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 001033954 9141_ $$y2024 001033954 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0 001033954 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x1 001033954 980__ $$adataset 001033954 980__ $$aVDB 001033954 980__ $$aI:(DE-Juel1)INM-1-20090406 001033954 980__ $$aI:(DE-Juel1)INM-7-20090406 001033954 980__ $$aUNRESTRICTED