001033956 001__ 1033956
001033956 005__ 20241218210702.0
001033956 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06794
001033956 037__ $$aFZJ-2024-06794
001033956 041__ $$aEnglish
001033956 1001_ $$0P:(DE-Juel1)194652$$aFocke, Niels$$b0$$eCorresponding author$$ufzj
001033956 1112_ $$aSilicon Quantum Electronics Workshop 2024$$cDavos$$d2024-09-04 - 2024-09-06$$gSiQEW 2024$$wSwitzerland
001033956 245__ $$aGermanium quantum wells as a novel material platform for spin qubits
001033956 260__ $$c2024
001033956 3367_ $$033$$2EndNote$$aConference Paper
001033956 3367_ $$2BibTeX$$aINPROCEEDINGS
001033956 3367_ $$2DRIVER$$aconferenceObject
001033956 3367_ $$2ORCID$$aCONFERENCE_POSTER
001033956 3367_ $$2DataCite$$aOutput Types/Conference Poster
001033956 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1734449702_22611$$xOther
001033956 502__ $$cRWTH Aachen
001033956 520__ $$aGermanium quantum wells emerged in recent years as a promising platform for gate-defined spin qubits. The unique properties of a two-dimensional hole gas in strained Ge, with exceptional carrier mobility, compatibility with silicon-based technologies, intrinsic spin-orbit-coupling, and anisotropic g-tensor are key to this promise. Particularly, the last two properties allow fast all-electrical qubit driving and enable novel approaches for spin qubit control. Additionally, the low effective mass and Fermi level pinning to the valence band simplifies the fabrication requirements of these devices. These considerations make Germanium quantum wells an excellent material choice for spin qubits. However, many of the platform's physical properties are yet to be understood in depth. Our measurements aim to uncover the microscopic behavior of the quantum well stack. The initial focus is on one and two qubit devices, to explore and understand the anisotropy of spin-orbit interaction and g-factor tensor. We report the current progress of our studies regarding these devices.
001033956 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001033956 7001_ $$0P:(DE-Juel1)196090$$aVisser, Lino$$b1$$ufzj
001033956 7001_ $$0P:(DE-Juel1)184501$$aAnupam, Spandan$$b2$$ufzj
001033956 7001_ $$0P:(DE-Juel1)201496$$aPanigrahi, Ashish$$b3$$ufzj
001033956 7001_ $$0P:(DE-Juel1)190990$$aMourik, Vincent$$b4$$ufzj
001033956 7001_ $$0P:(DE-HGF)0$$aReichmann, Felix$$b5
001033956 7001_ $$0P:(DE-HGF)0$$aMistroni, Alberto$$b6
001033956 7001_ $$0P:(DE-HGF)0$$aYamamoto, Yuji$$b7
001033956 7001_ $$0P:(DE-HGF)0$$aCapellini, Giovanni$$b8
001033956 8564_ $$uhttps://juser.fz-juelich.de/record/1033956/files/SiQEW24_Focke_Poster.pdf$$yOpenAccess
001033956 909CO $$ooai:juser.fz-juelich.de:1033956$$popenaire$$popen_access$$pVDB$$pdriver
001033956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194652$$aForschungszentrum Jülich$$b0$$kFZJ
001033956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196090$$aForschungszentrum Jülich$$b1$$kFZJ
001033956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184501$$aForschungszentrum Jülich$$b2$$kFZJ
001033956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201496$$aForschungszentrum Jülich$$b3$$kFZJ
001033956 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190990$$aForschungszentrum Jülich$$b4$$kFZJ
001033956 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001033956 9141_ $$y2024
001033956 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033956 920__ $$lyes
001033956 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
001033956 980__ $$aposter
001033956 980__ $$aVDB
001033956 980__ $$aUNRESTRICTED
001033956 980__ $$aI:(DE-Juel1)PGI-11-20170113
001033956 9801_ $$aFullTexts