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1) Motivation and Introduction

• Graph Edit Distance (GED): Measures the similarity of graphs by

quantifying the minimum cost of edit operations (insertion, deletion,

substitution) needed to transform one graph into another.

Given graphs g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2), the

GED(g1, g2) = min
{o1,o2,...,ok}∈γ(g1,g2)

k∑
i=1

cost(oi)

where γ(g1, g2) denotes all possible edit paths.

• Applications: GED is used in fields like bioinformatics, computer vi-

sion, and pattern recognition, enabling tasks such as molecular struc-

ture comparison and image matching.

• Challenge: High complexity that increases exponentially with the size

of graphs, making efficient GED computation crucial for large graphs.

Proposed Solution: FAS-GED

• Goal: Develop a Fast, Accurate, and Scalable approach for GED com-

putation leveraging GPU architectures.

• Key Features:

– High accuracy comparable to exact methods with significantly re-

duced computation time.

– Efficient best-k elements retrieval on GPU to balance accu-

racy/scalability. A larger value of K prioritizes accuracy, while a

smaller value ofK enhances scalability.

– Efficient utilization of GPU capabilities to handle large graphs with

minimal host-device communication.

2) FAS-GED Methodology

FAS-GED explores the search tree level by level on GPUs and cuts off all

nodes with a ranking greater than a given parameter (K) [1].

• Three-Phase GPU Process:

– Branching Phase:

* Apply edit operations to expand the nodes at a given tree level.

* Efficiently leverage GPU parallelism for simultaneous node ex-

pansion and evaluation of the partial edit distance.

– Ranking Phase:

* Rank the expanded nodes using local and global ranking mech-

anisms within GPU blocks, exploiting atomic operations without

host intervention.

– Update Phase:

* Update primary data structures with the best K nodes’ data

based on the ranking.

• Benefits:

– Reduces host-device communication, significantly improving per-

formance.

– Scales efficiently with graph size in a linear complexity.
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Figure 1: FAS-GED GPU implementation.

3) Performance Evaluation

• Accuracy: FAS-GED achieves

the optimal edit distance in over

90% of cases with a deviation

less than 0.5% using synthetic

graphs with varying sizes and

densities.

• Speedup: Up to 55× speedup

over NetworkX library [2] for

small size graphs.

• Scalability: Support graph

sizes up to 1000 vertices,

with an excellent accuracy–

complexity trade-off.

• Approximate results: Demon-

strates robust performance

across diverse real-world

datasets compared to Beam

Search (BS) and Depth First

Search (DFS) state-of-the-art

methods.
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Figure 2: FAS-GED vs. NetworkX open source library.
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Figure 3: FAS-GED compared to BS and DFS1 results using real-world

datasets.

4) Optimization of FAS-GED

Hardware Optimization

• Improve the data layout for ef-

ficient memory access, up to

50% improvement over the non-

optimized version.

• FAS-GED achieves a 300×

speedup over its baseline CPU

version on a 48-core AMD Epyc

CPU.

• Bottleneck: Synchronization

overhead in top-k search, ac-

counting for 80% of execu-

tion time and explaining perfor-

mance of A100 to H100 GPUs.
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Figure 4: FAS-GED Optimization and hardware scaling.

5) Application in Classification

• Enabling facst accurate GED

measurement for K-Nearest

Neighbor (KNN) classifier in

graph space.

• KNN/FAS-GED reaches similar

accuracy compared to sophis-

ticated Graph Neural Network

approaches (GNN_NDP [3] and

GNN_MEWISPool [4]) on Muta-

genicity dataset.
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Figure 5: KNN/FAS-GED vs. GNN for Graph Classification.

6) Conclusions

• Summary: FAS-GED significantly advances GED computation by bal-

ancing speed, accuracy, and scalability on GPU architectures.

• Future Work: Focuses on optimization and extending the approach to

very large graph sizes, while focusing on the application side.
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