001033991 001__ 1033991
001033991 005__ 20250224202207.0
001033991 0247_ $$2doi$$a10.1016/j.isci.2024.111365
001033991 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06825
001033991 0247_ $$2pmid$$a39758986
001033991 0247_ $$2WOS$$aWOS:001392969000001
001033991 037__ $$aFZJ-2024-06825
001033991 041__ $$aEnglish
001033991 082__ $$a050
001033991 1001_ $$0P:(DE-Juel1)179423$$aLahnakoski, Juha M.$$b0$$eCorresponding author
001033991 245__ $$aEmbodied emotions in ancient Neo-Assyrian texts revealed by bodily mapping of emotional semantics
001033991 260__ $$aSt. Louis$$bElsevier$$c2024
001033991 3367_ $$2DRIVER$$aarticle
001033991 3367_ $$2DataCite$$aOutput Types/Journal article
001033991 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734171757_20061
001033991 3367_ $$2BibTeX$$aARTICLE
001033991 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001033991 3367_ $$00$$2EndNote$$aJournal Article
001033991 520__ $$aEmotions are associated with subjective emotion-specific bodily sensations. Here, we utilized this relationship and computational linguistic methods to map a representation of emotions in ancient texts. We analyzed Neo-Assyrian texts from 934–612 BCE to discern consistent relationships between linguistic expressions related to both emotions and bodily sensations. We then computed statistical regularities between emotion terms and words referring to body parts and back-projected the resulting emotion-body part relationships on a body template, yielding bodily sensation maps for the emotions. We found consistent embodied patterns for 18 distinct emotions. Hierarchical clustering revealed four main clusters of bodily emotion categories, two clusters of mainly positive emotions, one large cluster of mainly negative emotions, and one of empathy and schadenfreude. These results reveal the historical use of embodied language pertaining to human emotions. Our data-driven tool could enable future comparisons of textual embodiment patterns across different languages and cultures across time.
001033991 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001033991 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001033991 7001_ $$0P:(DE-HGF)0$$aBennett, Ellie$$b1
001033991 7001_ $$0P:(DE-HGF)0$$aNummenmaa, Lauri$$b2
001033991 7001_ $$0P:(DE-HGF)0$$aSteinert, Ulrike$$b3
001033991 7001_ $$0P:(DE-HGF)0$$aSams, Mikko$$b4
001033991 7001_ $$0P:(DE-HGF)0$$aSvärd, Saana$$b5
001033991 773__ $$0PERI:(DE-600)2927064-9$$a10.1016/j.isci.2024.111365$$gp. 111365 -$$p111365$$tiScience$$v27$$x2589-0042$$y2024
001033991 8564_ $$uhttps://juser.fz-juelich.de/record/1033991/files/Lahnakoski_Bennett_et_al_iScience_2024.pdf$$yOpenAccess
001033991 8767_ $$8E-2024-01465-b$$92025-02-19$$a1200211749$$d2025-02-24$$eAPC$$jZahlung erfolgt
001033991 909CO $$ooai:juser.fz-juelich.de:1033991$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
001033991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179423$$aForschungszentrum Jülich$$b0$$kFZJ
001033991 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)179423$$a LVR-Klinikum Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf,$$b0
001033991 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001033991 9141_ $$y2024
001033991 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
001033991 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001033991 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:51:15Z
001033991 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:51:15Z
001033991 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
001033991 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-24
001033991 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001033991 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:51:15Z
001033991 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-24
001033991 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bISCIENCE : 2022$$d2025-01-02
001033991 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001033991 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001033991 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001033991 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
001033991 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001033991 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bISCIENCE : 2022$$d2025-01-02
001033991 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001033991 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001033991 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001033991 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001033991 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001033991 920__ $$lno
001033991 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001033991 9801_ $$aFullTexts
001033991 980__ $$ajournal
001033991 980__ $$aVDB
001033991 980__ $$aUNRESTRICTED
001033991 980__ $$aI:(DE-Juel1)INM-7-20090406
001033991 980__ $$aAPC