001     1033991
005     20250224202207.0
024 7 _ |a 10.1016/j.isci.2024.111365
|2 doi
024 7 _ |a 10.34734/FZJ-2024-06825
|2 datacite_doi
024 7 _ |a 39758986
|2 pmid
024 7 _ |a WOS:001392969000001
|2 WOS
037 _ _ |a FZJ-2024-06825
041 _ _ |a English
082 _ _ |a 050
100 1 _ |a Lahnakoski, Juha M.
|0 P:(DE-Juel1)179423
|b 0
|e Corresponding author
245 _ _ |a Embodied emotions in ancient Neo-Assyrian texts revealed by bodily mapping of emotional semantics
260 _ _ |a St. Louis
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734171757_20061
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Emotions are associated with subjective emotion-specific bodily sensations. Here, we utilized this relationship and computational linguistic methods to map a representation of emotions in ancient texts. We analyzed Neo-Assyrian texts from 934–612 BCE to discern consistent relationships between linguistic expressions related to both emotions and bodily sensations. We then computed statistical regularities between emotion terms and words referring to body parts and back-projected the resulting emotion-body part relationships on a body template, yielding bodily sensation maps for the emotions. We found consistent embodied patterns for 18 distinct emotions. Hierarchical clustering revealed four main clusters of bodily emotion categories, two clusters of mainly positive emotions, one large cluster of mainly negative emotions, and one of empathy and schadenfreude. These results reveal the historical use of embodied language pertaining to human emotions. Our data-driven tool could enable future comparisons of textual embodiment patterns across different languages and cultures across time.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Bennett, Ellie
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Nummenmaa, Lauri
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Steinert, Ulrike
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sams, Mikko
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Svärd, Saana
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.isci.2024.111365
|g p. 111365 -
|0 PERI:(DE-600)2927064-9
|p 111365
|t iScience
|v 27
|y 2024
|x 2589-0042
856 4 _ |u https://juser.fz-juelich.de/record/1033991/files/Lahnakoski_Bennett_et_al_iScience_2024.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1033991
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179423
910 1 _ |a LVR-Klinikum Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf,
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)179423
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:51:15Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:51:15Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:51:15Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ISCIENCE : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ISCIENCE : 2022
|d 2025-01-02
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21