001     1033997
005     20241212210729.0
024 7 _ |a 10.1101/2024.11.27.24318057
|2 doi
037 _ _ |a FZJ-2024-06830
041 _ _ |a English
100 1 _ |a Nazarzadeh, Kimia
|0 P:(DE-Juel1)188338
|b 0
|e Corresponding author
245 _ _ |a Machine Learning-Driven Correction of Handgrip Strength: A Novel Biomarker for Neurological and Health Outcomes in the UK Biobank
260 _ _ |c 2024
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1734006815_5470
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Background: Handgrip strength (HGS) is a significant biomarker for overall health, offering a simple, cost-effective method for assessing muscle function. Lower HGS is linked to higher mortality, functional decline, cognitive impairments, and chronic diseases. Considering the influence of anthropometrics and demographics on HGS, this study aims to develop a corrected HGS score using machine learning (ML) models to enhance its utility in understanding brain health and disease. Methods: Using UK Biobank data, sex-specific ML models were developed to predict HGS based on three anthropometric variables and age. A novel biomarker, ∆HGS, was introduced as the difference between true HGS (i.e., directly measured HGS) and bias-free predicted HGS. The neural basis of true HGS and ∆HGS was investigated by correlating them to regional gray matter volume (GMV). Statistical analyses were performed to test their sensitivity to longitudinal changes in stroke and major depressive disorder (MDD) patients compared to matched healthy controls (HC).Results: HGS could be accurately predicted using anthropometric and demographic features, with linear support vector machine (SVM) demonstrating high accuracy. Compared to true HGS, ∆HGS showed high reassessment reliability and stronger, widespread associations with GMV, especially in motor-related regions. Longitudinal analysis revealed that neither HGS nor ∆HGS effectively differentiated patients from matched HC at post time-point.Conclusion: The proposed ∆HGS score exhibited stronger correlations with GMV compared to true HGS, suggesting it better represents the relationship between muscle strength and brain structure. While not effective in differentiating patients from HC at post time-point, the increase in ∆HGS from pre to post time-points in patient cohorts may indicate improved utility for monitoring disease progression, treatment efficacy, or rehabilitation effects, warranting further longitudinal validation.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 1
536 _ _ |a SFB 1451 B05 - Einzelfallvorhersagen der motorischen Fähigkeiten bei Gesunden und Patienten mit motorischen Störungen (B05) (458640473)
|0 G:(GEPRIS)458640473
|c 458640473
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 1
700 1 _ |a Antonopoulos, Georgios
|0 P:(DE-Juel1)180946
|b 2
700 1 _ |a Hensel, Lukas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tscherpel, Caroline
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Komeyer, Vera
|0 P:(DE-Juel1)187351
|b 5
700 1 _ |a Raimondo, Federico
|0 P:(DE-Juel1)185083
|b 6
700 1 _ |a Müller, Veronika
|0 P:(DE-Juel1)131699
|b 7
700 1 _ |a Grefkes, Christian
|0 P:(DE-Juel1)161406
|b 8
700 1 _ |a Patil, Kaustubh R.
|0 P:(DE-Juel1)172843
|b 9
773 _ _ |a 10.1101/2024.11.27.24318057
856 4 _ |u https://www.medrxiv.org/content/10.1101/2024.11.27.24318057v2.full
856 4 _ |u https://juser.fz-juelich.de/record/1033997/files/Machine%20Learning-Driven%20Correction%20of%20Handgrip%20Strength%3A%20A%20Novel%20Biomarker%20for%20Neurological%20and%20Health%20Outcomes%20in%20the%20UK%20Biobank.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1033997
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188338
910 1 _ |a Uni Köln
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)188338
910 1 _ |a INM-3
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)188338
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180946
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)187351
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)185083
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131699
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-Juel1)131699
910 1 _ |a Goethe Universität Frankfurt
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-Juel1)161406
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)172843
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 1
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21