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Directedmotion of cognitive active agents
in a crowded three-way intersection
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Understanding the navigation through semi-dense crowds at intersections poses a significant
challenge in pedestrian dynamics, with implications for facility design and insights into emergent
collective behavior. To tackle this problem, a systemof cognitive active agents at a crowded three-way
intersection is studied using Langevin simulations of intelligent active Brownian particles (iABPs) with
directed visual perception (resulting in non-reciprocal interactions) and self-steering avoidance—
without volume exclusion. We find that the emergent self-organization depends on agent
maneuverability, goal fixation, and vision angle, and identify several forms of collective behavior,
including localized flocking, jamming and percolation, and self-organized rotational flows.
Additionally, we demonstrate that the motion of individual agents can be characterized by fractional
Brownian motion and Lévy walk models across different parameter regimes. Moreover, despite the
rich variety of collective behavior, the fundamental flow diagram shows a universal curve for different
vision angles. Our research highlights the impact of collision avoidance, goal following, and vision
angle on the individual and collective dynamics of interacting pedestrians.

The collective behavior of active agents is ubiquitous: from eucaryotic cells,
bacteria and microbots, to insects, birds, fish, humans, and robots1. On the
mesoscopic and macroscopic size scale, directional sensing (like vision),
cognitive information processing, and the adaptation of motion are dis-
tinctive features of these processes and the emergent self-organization. An
important example of this behavior is collective pedestrian movement,
whose understanding is imperative for designing strategies to facilitate
smooth pedestrian flow in crowded areas, mitigate crowd-related disasters
in confined spaces, and develop effective evacuation procedures2. Another
key aspect is the goal-oriented motion of the participants. For pedestrian
navigation in crowds, typical scenarios are the formation of traffic jams in
front of narrow passages and bottlenecks, the interaction of groups in
counter flow leading to lane formation, and the self-organization of flows at
intersections (see the reviews3,4 and references therein). Situations like the
Shibuya Crossing in Tokyo or mall intersections pose important questions
regarding self-organization and the design optimization of facilities.
Experiments and simulations of bi-directional flows demonstrate lane
formation5–7, while cross flows at an angle result in stripe-like patterns8.
Four-directional cross-flow experiments9–12 and multi-directional crossing
scenarios explored through circle antipode experiments13,14, with partici-
pants positionedon a circle and crossing diagonally, have beenused to study
navigation strategies, conflict avoidance etc.

The importance of understanding theflowofpedestrian crowdshas led
to the development of various modeling approaches in recent decades, e.g.,

the force-based models, cellular automaton-based approaches, several
physics-inspired models, game theory, optimal control and fluid dynamics
(for amoredetailed expositionof thedifferent approaches, see refs. 3,4,15,16
and references therein). The importance of a close interplay between
empirical and theoretical investigations has inspired the use of specifically
designed laboratory experiments3,4,17, which generate quantitative results
that are important benchmarks for modeling.

However, collective motion and emergent self-organization in
crowds and swarms is not unique for pedestrians, but can be observed in
many other types of cognitive active agents. Therefore, this behavior can
generically be understood as the behavior of interacting self-propelled
entities, which places it into the realm of the large field of “active
matter”18, which encompasses systems from cell suspensions and self-
propelling colloids to schools of fish and flocks of birds. In this context,
the active Brownian particle (ABP) model has been used extensively to
understand many intriguing aspects of non-equilibrium physics such as
motility-induced phase separation19,20 and wall accumulation21,22.
Moreover, when equipped with directional environment sensing and
self-steering, ensembles of ‘intelligent’ ABP systems (iABPs) can show a
rich variety of collective phenomena such as milling, single-file motion,
flocking, worm-like swarms, and polar or nematic ordering23–26. In
pedestrianmodels, vision-based sensing and cognitive steering have also
been identified as key ingredients that determine the emergent collective
behavior27–30. This suggests the possibility of a unified description of
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systems of cognitive active agents by iABP models—from pedestrian
crowds to animal herds31.

Results
Model and cross-stream setup
We investigate here a three-stream intersection scenario (see Fig. 1a), which
emulates the crossing of multi-directional flows in a circle. This scenario is
designed by incorporating goal-following behavior to each agent to generate
active streams, in addition to collision avoidance, creating conditions where
particles must navigate through a crowded environment. While this is our
primary focus, our model can also be easily applied to well-established bi-
directional and cross-flow scenarios and yield qualitatively consistent
behavior (see Supplementary Note 3).

In contrast to a straightforward two-wayflowconfiguration, pedestrian
movement at intersections with multiple streams does not readily organize
itself through lane or stripe formation,making it an important case to study.
A similar setup with two intersecting streams has been studied
experimentally9. Since we are interested in the general physicalmechanisms
of interacting streams, sophisticated models, which usually have several
adjustable parameters, arenot appropriate. Instead, pedestrians aremodeled
as intelligent active Brownian particles (iABPs) in two spatial dimensions
(see Fig. 1b), which experience a propulsion force fp acting along their
orientation vector ei, and a friction force −γviwith velocity vi, which implies
a constant speed v0 = fp/γ. Any individual variability is incorporated as noise
in the equation of motion which specifies the dynamics of the position ri of
an iAPB:

m€ri ¼ f pei � γ_ri; ð1Þ

wherem is the agentmass and γ is the friction coefficient. Each pedestrian is
associated with a type ti, which encodes their goal direction. We employ a
self-steeringmechanism in the formof a torque that changes the directionof
motion as

_ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd � 1ÞDr

p
Λi þΩMvis þ KMgoal; ð2Þ

whereDr is the rotational diffusion coefficient,d is the dimensionality,Λi is a
Gaussian random process,Ω and K are the strength of the steering torques

related tovisual perception (Mvis) andgoalfixation (Mgoal), respectively.The
noise acts perpendicular to the direction of motion, so that

Λi ¼ ζ i × ei; ð3Þ

where ζi is a Gaussian and Markovian random process with 〈ζi(t)〉 = 0 and
hζ iðtÞ � ζ jðt0Þi ¼ δijδðt � t0Þ. The agents avoid collisionswith each other via
‘vision-assisted’ reorientation of their propulsion direction, which is
described by the torque25

Mvis ¼ � 1
Ni

X
j2VC

Tij ei ×
rij
jrijj

× ei

 !" #
; ð4Þ

where rij= rj− ri is the displacement vector between particle i and particle j,
and Tij is a weight factor,

Tij ¼ eð�jrijj=R0Þ½3� ei � ej�=4: ð5Þ

which increases the relative importance of avoiding agentsmoving ‘head-on’
towards each other (ei ⋅ ej = −1), as opposed to co-moving agents (i.e.,
ei ⋅ ej = 1) by a factor 1/232. Lastly, Ni =∑j∈VCTij is the normalization factor.
The exponential distance dependence in Eq. (5) limits the range of the
interaction, such that for highdensity of agents the effective vision range isR0.
The sumisover all particles j that are in thevision rangeVCof theagent i,with

VC ¼ jj rijjrijj
� ei ≥ cosψ and jrijj <Rv

( )
ð6Þ

whereψ is the vision angle andRv>R0 the ‘full’ vision range. Steering toward
the goal is determined by the torque

Mgoal ¼ ei × d̂ðtiÞ× ei
� �h i

; ð7Þ

where the unit vector d̂ðtiÞ is direction toward the goal, withwhich particle i
attempts to align (see Fig. 1a). In two-dimensions, Eq. (2) can be simplified

Fig. 1 | Schematic of intersecting streams and
vision-based avoidance. a Simulation setup of a
three-way pedestrian crossing. The colors represent
different pedestrian types ti, i.e., pedestrians with
different goals (alignment along direction d(ti)). The
human markers show the position of influx, each
separated by an angle of π/3 from the other and
placed on an interaction circle of radiusRint = 120R0.
The shaded regions depict the regions of ‘successful
exits’ (see “Methods”), and the distribution at the
inflow indicates the ‘spread’ of each stream leading
to an effective interaction zone (dashed circle) Rint/2
(see “Methods”). b Schematic diagram of the (non-
reciprocal) vision-based interaction of agents i and j.
The vision angle is highlighted in blue, with a vision
angle ψ and cutoff 4R0. c–f Sample trajectories
showing the effect of goal fixation and visual
avoidance for a vision angle of ψ = π/2. Agents with
the same goal direction for c Δ = 1 and d Δ = 2. The
blue agent does not ‘see’ the red one and therefore
does not react. Agents with opposite goal directions
for e Δ = 1 and fΔ = 2. In the cases (e, f), both agents
see each other and move away. In all cases, in the
initial state at t = 0, the distance between the agents
is r = 3R0.
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in polar coordinates as

_θi ¼
ffiffiffiffiffiffiffiffi
2Dr

p
ξi �

Ω

Ni

X
j2VC

Tij sinðϕij � θiÞ
" #

þ K sinðΘðtiÞ � θiÞ ð8Þ

where ξi is a Gaussian random process and ϕij, Θ(ti), and θi are the polar
angles of the vectors rij, d̂ðtiÞ, and ei, respectively.

We define the relative maneuverability Δ = Ω/K, which measures the
relative strength of visual avoidance to target fixation. The combined effect
of alignment andmaneuverability is shown inFig. 1c–f. Pedestriansnavigate
theirmovementpaths basedonvisual cues toavoid collisionswithothers, by
adjusting their propulsion direction. For larger relative maneuverability Δ,
the agentsmake sharper turns, see Fig. 1d, f. Importantly, the agents’ vision-
based interactions are non-reciprocal for vision angle ψ < π, see Fig. 1c, d.
Here the trailing agent notices the leading agent, but not vice versa.

The activity of the agents is described by the dimensionless Péclet
number Pe = fp/(γR0Dr) = v0τr/R0, where τr= 1/Dr is the rotational diffusion
time and v0 = fp/γ is the agent velocity. All lengths are measured in units of
R0, time in units of τr. The goal fixation is set toK= 8Dr and the vision range
Rv = 4R0. The inflow rate Γ measures the number of agents entering the
interaction circle at each inflow per unit time (τr). The system is studied for
varying relative maneuverability Δ =Ω/K, vision angle ψ, and inflow rate Γ.

We operate in the limit of over-damped motion so that inertial effects
are negligible and the self-steering gives a realistic description of pedestrian
cognitive motion. In our simulations, agents are modeled as point particles,
placing us in the regime of semi-dense crowds, where the volume-exclusion
radius σof an individual pedestrian ismuch smaller than thevision rangeRo,
i.e., σ≪ R0 and the speed of the agents is roughly constant. By doing so, we
specifically focus on isolating and understanding the effects of self-steering
on agent dynamics.

Note that the models in our current study and in ref. 31 both employ
vision-based steering torques to avoid close approach to other particles.
However, a crucial difference in the two models are (i) the individual goal-
orientation of the motion of all particles, and (ii) the distinction of on-
coming and co-moving particles in the steering avoidance.While seemingly
minor, these differences significantly impact the emergent collective beha-
vior and long-term dynamics of the agents.

Comparisonwith “Social-Force”Models—Akey feature in ourmodel is
that essentially all ‘social’ interactions, such as neighbor avoidance and goal-

following, act to reorient the agents heading direction, which is an essential
feature governing pedestrian dynamics33,34. This contrasts with ‘force-like’
interactions, which are typically described by a potential. It is, in fact,
intuitive that social interactions like goal following or inter-agent avoidance
are non-reciprocal and should be distinguished from “forces”, such as
excluded-volume effects or hard-core repulsion. Our model has certain
advantages over othermodels for the specific scenario that we are interested
in, i.e., semi-dense crowds, where vision-induced steering dominates over
short-range excluded-volume repulsion. There are several more sophisti-
cated pedestrian models that take into account further aspects that are less
relevant in this context, the key considerationhere is themitigationof strong
inertia effects. Since inertia effects are minimal in semi-dense scenarios,
where steering dominates over repulsion, force-based models tend to per-
formpoorly in these conditions,which leads, e.g., to unrealistic behavior like
oscillatory motion or “tunneling” of particles. For a more detailed discus-
sion, we refer to refs. 35,36 and references therein. These problems are
avoided by the present model, further highlighting the strengths of our
approach.

Dynamic state diagram
The state diagram of the various collective pedestrian movement states as
function of relativemaneuverabilityΔ and vision angleψ is shown inFig. 2a.
At smallΔ≲ 1, agents essentially ignore eachother andhead directly toward
the goal, see Fig. 2b. This behavior corresponds to the case of ‘dumb’ active
Brownian particles, and is expected to display activity-induced jamming in
the presence of excluded volume effects. Thus, efficient navigation requires
pedestrians to have maneuverability Ω larger than goal fixation K, i.e.,
Δ = Ω/K ≳ 1. The required relative maneuverability Δ increases with
decreasing vision angle, as agents see fewer other agents for smaller ψ. As Δ
increases for larger vision angles, the pedestrian streams start to avoid each
other, which results in a complexmotionmarked bymany scattering events,
see Fig. 2c and SupplementaryMovie 1.While for two intersecting streams,
lane (or stripe) formation occurs37, for three streams the scenario is much
more complex and no stable global order exists9. The agents rapidly change
their direction attempting to avoid other agents leading to noisy and con-
voluted trajectories. For ψ = π, agents enter a jammed-percolating state,
wherein strong clustering is observed and agents cross the interaction
regime in groups, see the ‘clustered’ trajectories in Fig. 2d.

As the vision angle is further decreased, to ψ < π/2, the particle motion
drastically changes, see Fig. 2e. In this regime, agents mainly avoid other

Fig. 2 | State diagram and agent trajectories. a State diagram of pedestrian
movement states as a function of the relative maneuverability Δ = Ω/K and vision
angle ψ. b For small Δ, the agents do not avoid each other significantly, and pass
through the interaction zone nearly unhindered. c For intermediate Δ and vision
angles ψ ≥ π/2, a scattering regime emerges as the agents attempt to avoid each other
while crossing. d For higher Δ, and the largest vision angle ψ = π and relative
maneuverability Δ = 8, a jammed, percolating phase develops. e For intermediate Δ

and smaller vision anglesψ < π/2, a ‘localized flocking’ regime is found, where agents
navigate by aligning with oncoming individuals, forming a local co-moving
pedestrian cluster, thus leading to clustering and flocking—as seen by the emergence
of parallel trajectories (with different pedestrian types). Here we fix Γ = 1. The solid
black lines are a guide to the eye-separating the different phase regimes.
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agents directly ahead of them, implying that their direction of motion
changes only for high particle densities, i.e., close to the center of the
interaction zone and near the other incoming pedestrian streams. This state
is characterizedby thepresenceofparallel trajectories in the interaction zone
(see Fig. 2e). Here an agent of one type initially adopts a strategy of polar
alignment with the oncoming agents of the other types to avoid “collisions”.
The small vision angle is responsible for this flocking-based avoidance
mechanism, and has been shown recently in ref. 31. Note that the goal-
following disrupts the avoidance-induced global flocking state (for vision
angle ψ = π/4) without goal orientation31.

No pronounced differences are observed for various choices of Pe
across all vision angles, which is due to the large goal-fixation (K/Dr = 8).

Cluster-size distributions: percolation and localized flocking
As Δ increases for vision angle ψ = π, the system undergoes a jamming
transition due to increased avoidance between agents. Note that the
jamming here is not due to volume exclusion, but due to the strong
tendency to maintain a large inter-agent distance in all directions. In the
jammed state, the agents crowd the interaction regime and form large
clusters comprised of agents with the same goal (or type). Clustering is
initiated at the inflow; the clusters then extend deep into the interaction
region as agents navigate toward their respective goals. Remarkably, the
jammed state also exhibits percolation, i.e., the clusters span the length of
the interaction zone, see Fig. 3a. The cluster-size distribution for a cluster
of size nc(ti) (ti denotes that the clusters contain agents with the same
type) shows a power-law decay, with an exponent 2.2, consistent with the
percolation universality class38. Therefore, despite of the complex motion
and continuously varying environment, the movement from the inflow
to the exit can be understood qualitatively under the realm of percolation
theory. The broad peak in the cluster-size distribution at nc(ti) ≳ 200
represents the cluster formed initially at the inflow that then feeds smaller
clusters into the system which make their way to the exit (nc(ti) < 100).
Note that the percolation in this case is dynamic, i.e., the system shows
transient periods of percolating clusters, interrupted by times when the
clusters are dispersed, see Fig. 3b.

In the regime of small vision angles, specifically for ψ = π/4, agents
exhibit avoidance-induced flocking behavior. Consider two agents moving

toward each other at a small angle, so that only one of them is visible to the
other.The ‘aware’ agent initiates a (slight) turn to avoid a collision.However,
the unaffected motion of the other agent causes it to repeatedly enter the
vision cone of the ‘aware’ agent. Consequently, the aware agent must keep
turning away until the other agent is no longer visible to it. This only
happens when they move essentially parallel to each other, resulting in the
formation of a co-moving cluster, as illustrated in the inset of Fig. 3c. This
process repeats when this mini-cluster encounters other agents, who may
also align to avoid collision, thereby also becoming part of the cluster (see
Supplementary Movie 2). A particle can only leave the cluster if a strong
fluctuation disrupts its aligned state. Consequently, an avoidance-induced
clustering and flocking state emerges as the strength of relative maneuver-
ability Δ increases.

This phenomenon is characterized in Fig. 3c, d, where a significant
increase in the average cluster size 〈nc〉, number Nc of clusters, and cluster
polarization Pc is observed with increasing Δ. For small Δ ≲ 1, polarization
remains close to 0.5, indicating a non-flocking state. This occurs due to the
random overlap of particles from neighboring streams that do not avoid
each other due to the low self-steering avoidance. However, as Δ increases,
the clusters achieve a polarization value near unity, signaling the emergence
of a flocking/clustering state.

Path length distributions
With increasing relative maneuverability Δ, strong avoidance between
agents leads to scattering, and implies larger exit times and broader path-
length distributions, as presented in Fig. 4 for various Δ and ψ. The path-
length lp = Σt∣drt∣ is the length of the entire trajectory of the agent from the
inflow till the exit, where drt is the displacement at time t. Only ‘successful’
exits, i.e., agents that reach their goal are considered in the analysis (see
“Methods” section). For Δ ≲ 1, inter-agent interactions are small, and the
path length distribution of nearly straight paths can be estimated to be (see
“Methods” section)

f LðelpÞ ¼ 2elp exp½�ð1� ðelpÞ2Þ=2ðeσÞ2�eσ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1� ðelpÞ2Þq ; ð9Þ

Fig. 3 | Cluster-size distribution and cluster
polarization. a A transition into the percolation
state occurs as Δ is increased for vision angle ψ = π,
marked by the development of a power law decay of
the cluster size distribution P[nc(ti)] and the large
percolated cluster The peak at large cluster sizes is
due to finite system size. Here, clusters of size nc(ti)
contain agents with the same 'goal' i.e., types, and the
distribution is generated by combining the cluster
data of all agent types. b The three largest clusters at
Δ = 8.0 and ψ = π at two different times for pedes-
trians of one type. (Left) Clusters are dispersed and
the largest cluster is at the inflow. (Right) The largest
cluster can feed smaller clusters and reach up to the
exit, forming a transiently percolated cluster.
c Average cluster polarization Pc (see Eq. (16) in
“Methods”) for ψ = π/4 shows an increase with Δ,
indicating the development of avoidance-induced
flocking. The inset shows the trajectory of two agents
exhibiting avoidance-based flocking. d The transi-
tion into the localizedflocking phase is characterized
by a strong increase in both the mean cluster size
〈nc〉 and the number Nc of clusters. For ψ = π/4, the
clustering analysis is performed for all agents, i.e., a
cluster of size nc can contain agents with any goal
direction. The distance cutoff Rcut are chosen to be
Rcut ≃ Rv and Rcut ≃ R0 for vision angles ψ = π and
ψ = π/4, respectively (see “Methods” section).
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where elp ¼ lp=2Rint andeσ ¼ σ=R0 is thenormalized variance at the inputof
the stream. For lowΔ, the datamatcheswell with the estimated distribution,
see Fig. 4a. However, as Δ increases, the distribution shifts to larger lp and
broadens. This occurs as agents scatter strongly due to high avoidance Δ,
leading to longer paths. Agents with lower vision angles reach their desti-
nations in shorter paths, due to fewer scattering events as seen in Fig. 4b,
where increasing ψ causes a shift of the distribution to larger lp, along with
the development of a longer tail. The distributions for Δ ≳ 1 and ψ ≥ π/2
follow a log-normal distribution, which is verified by performing a
Kolmogorov-Smirnov test with confidence interval of 95%. Notably, log-
normally distributed path lengths have been documented in antipode
experiments involving pedestrians initiated on a circle13. The experimental
arrangement closely mirrors the three-stream configuration utilized in our
simulations, providing empirical support for the shape of the observed
distribution.

Dynamics and mean-squared displacement
To better understand the dynamics of the agents, we compute their mean-
squared displacement (MSD)

hr2ðtÞi ¼ hjrðt þ τÞ � rðτÞj2iτ ; ð10Þ

where r(t) is theposition vector of the particle at time t. TheMSDcurves (see
SupplementaryNote 1, Supplementary Fig. S1) indicate that increasingΔ or
ψ leads to larger scattering causing a shift of the motion from ballistic to
super-diffusive. We also calculate the orientational auto-correlation
function

CðtÞ ¼ heiðt þ τÞ � eiðτÞiτ ð11Þ

for differentΔ atψ = π/2. For smallΔ≲ 1, themotion is strongly correlated,
i.e., the particles hardly change their direction of motion as they have a
strong tendency to orient andmove toward the goal and do not scatter. For
Δ ≳ 1, the auto-correlation function C(t) displays a slow power-law decay,
consistent with the super-diffusive behavior observed in the MSD
〈r2(t)〉 = Kαt

α.
The observed functional forms of C(t) and the MSD suggest that the

motion of a single agent can be described by fractional Brownian motion
(fBM)39 or Levy walk (LW) model40,41. For fraction Brownian motion

CðtÞ ¼ dDH

Γð2H � 1Þ t
2H�2; hr2ðtÞi ¼ 2dDH

Γð2H þ 1Þ t
2H ð12Þ

where d is the spatial dimensionality, H is the Hurst exponent and DH

measures the strength of the colored noise. For Levy walks with a constant
flight velocity and a probability distributionΨ(τ) ~ τ−(1+μ) for a flight of time

τ, one has

CðtÞ / t�ð1þμÞ; hr2ðtÞi / t3�μ ð13Þ

where 0 < μ < 1 implies ballistic motion, 1 < μ < 2 super-diffusion, and μ > 2
diffusion. It is crucial to emphasize that in our case themotion is not purely
fBM or LW, as the goal-fixation leads to a preference for a certain direction.
However, by considering that we have a smaller subset of possible
trajectories of an fBMor LW,we can use themodel to interpret the behavior
of the agents in terms of single particle motion.

We extract both fBM parameters H and DH along with the Levy walk
exponent μ. Figure 5a shows a marginal variation in the Hurst exponent
with 0.8 <H < 1, consistent with the super-diffusive/ballistic motion of the
agents (α = 2H). A value H > 1/2 indicates the long-memory effect of the
noise, a consequence of the goal-oriented motion of the agents. A similar
effect is captured in the exponent μ of LW, where measurements indicate
1 < μ < 1.5, implying a slow decay of ψ(τ), long duration of ‘straight’ paths,
and super-diffusive behavior. As Δ increases, μ also increases and the
probability of longer paths decreases. This is due tomore frequent collisions
between agents, caused by stronger avoidance behavior.

Notably, for increasingΔ and (or)ψ there is a strongdecrease inDHdue
to more scattering events, thus implying smaller diffusion coefficient
Kα∝DH, see Fig. 5b.Note that the ‘noise’ strengthof the fMB is related to the
average step length taken by the agent, which decreases for increased scat-
tering. Thus an increase in ‘scattering-induced noise’ causes an decrease in
the fBM noise, an important correspondence to keep in mind. The fBM
analysis suggests that the interactions lead to an overall decrease in the
effective velocity captured via DH, while the motion is still overall ‘goal-
oriented’ i.e., super-diffusive.Themotionof agents at narrower visionangles
and largeΔ are closer to Levywalks, due to longer flight states (i.e., flocking)
followed by short reorientation events arising due to avoidance-induced
alignment with clusters. At large ψ and Δ, although the overall motion is
ballistic, there are hardly any straight paths, and themotion is closer to fBM.
This can also be seen by looking at thefixed-timedisplacement distributions
(and trajectories) in thedirection ‘perpendicular’ to the goal direction,where
the contribution from the scattering (without goal following) can be isolated
(see Supplementary Fig. S2). For large δ and vision anglesψ= π andψ= π/4,
the fixed-time displacement distributions are Gaussian and Levy-like,
respectively. However, for intermediate values of ψ and Δ, LW or fBM
cannot be established (see Supplementary Note 3, Supplementary Figs. S3,
S4).This highlights that the comparisonof the simulations to thesemodels is
largely qualitative.

Notably at (Δ, ψ) = (8, π), the jammed/percolated phase has a larger
Hurst exponentH compared to the ‘scattering’ state at (Δ,ψ) = (4,π), despite
nearly equal diffusion coefficientDH. Here, bymovingwithin the percolated
cluster, the agents can achieve directed movement with larger long-time

Fig. 4 | Path-length probability distribution.
Probability distribution P of the path length lp for
a different relative maneuverability (ψ = π/2,
Pe = 100) and (b) different vision angles (Δ = 8,
Pe = 100). For small Δ, the paths are nearly straight
and the probability distribution is well approxi-
mated by Eq. (9) (dashed line). In scenarios char-
acterized by high maneuverability (Δ) and large
vision angles (ψ), agents traverse longer pathswithin
the interaction sphere to navigate around others.
This behavior yields a log-normal distribution for
the path length, with the black solid line represent-
ing a fitted log-normal model to the data. The path
lengths are only determined for trajectories that
successfully reach the exit (see “Methods”) and are
averaged over different agent types. The data is
collected for times 4t0 < t< 16t0 and averaged over all
agents, where t0 = 2Rint/v0.
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memory effects (i.e., largeH or small μ) as the agents follow the cluster that
has alreadymade itsway to the exit, highlighting the unique dynamics of the
jammed state (see SupplementaryMovie 3).Qualitatively, this phenomenon
resembles the behavior of pedestrians joining forces to penetrate through
highly congested areas, reflecting a collective strategy to navigate through
crowded spaces more effectively. Overall, we conclude that the complex
motion involving a combination of noise, goal fixation, and vision-based
steering avoidance between several other agents can be described in amean-
field manner by either a fBM or LW description, depending on the
vision angle.

Dependence on inflow rate
The (dimensionless) inflow rate Γ, i.e., the number of agents entering at the
inflowregionperunit time τr, is an important parameter that determines the
emergent behavior in the interaction regime. Already in the much simpler
scenario of single-file motion with volume exclusion, changing the inflow
(and similarly the outflow) rate can lead to so-called boundary-induced
phase transitions42. We focus on the regime of large Δ representing the case
of strong avoidance, and study the effect of changing inflowrateon the agent
motion for different vision angles ψ.

The fundamental diagram for the pedestrian movement relates flux
J ¼ ρ�v and average velocity �v to the average density ρ, see Fig. 6a, b. The
averagedensityρ ¼ Nd2neigh=R

2
int in the interaction region (of radiusRint/2)

is measured by approximating the area occupied by each agent by the
average minimum separation dneigh(Γ, ψ) within the vision range Rv (see
“Methods”). Since themotion is largely ballistic,we approximate the average
velocity as�v ¼ ffiffiffiffiffiffi

Kα

p
. Notably, we observe a collapse of the data for different

vision angles onto a single master curve with the characteristic form of the
fundamental diagram, i.e., a free-flow regime at low ρ and the jammed state
at high ρ. Even without explicit velocity adaptation in our model, we suc-
cessfully replicate essential features of the fundamental diagram for pedes-
trian flow43. This implies that the model demonstrates robust properties
when examined from a statistical viewpoint. In addition, we conclude from
our simulation results that the fundamental diagramholds even for different
vision angles.

In the free-flow regime, we have a steady state and the inflow
equals the outflow. However, at ψ = π, a jamming transition occurs
around Γcrit ≈ 0.5, leading to a sudden rise in the average density
(ρ > 1.0) (see Fig. 7c, d). In this case, a large number of agents exit
close to the entry due to overcrowding in the interaction regime and
the outflow saturates. The jamming is triggered by the limited
transport capacity in the interaction regime, and thus generally
Γcrit = Γcrit(R), where R is the system size. This is notably different
from boundary-induced phase transitions in one-dimensional
systems42, which show no system-size dependence. Moreover, the
monotonic decay of �vðρÞ suggests that the free-flow to jamming

Fig. 6 | Fundamental flow diagram. Fundamental diagrams of the pedestrian flow
measured by performing simulations with different pedestrian inflow Γ for a fixed
Δ= 8. a Flux J ¼ �vρ and (b) average velocity�v as a function of themean agent density
ρ. The data collapses onto a single master curve for different vision angles and
exhibits the characteristic shape of the fundamental diagram, showing the free-flow
(ρ < 0.5) and jammed regimes (ρ > 1). c Agent trajectories for Γ = 4 and ψ = π/2

showing the development of rotational flows and roundabout traffic-like
motion. For ψ = π, a jamming transition occurs for large inflow Γ > 0.5, marked
by a sudden rise in density (see ρ > 1.0) and a strong reduction in velocity �v. The
solid black line in (a, b) is an approximate fit based on the Kladek formula
vðρÞ ¼ v0 1� expð�c½ρ�1 � ρ�1

jam�Þ
h

, where v0 = 1 and we set ρjam = 4 and c = 0.4 for a
good fit.

Fig. 5 | Fractional Brownianmotion and Lévy walks. aHurst exponentH and Lévy
walk exponent μ (red) and (b) diffusion coefficientDH for increasingΔ and different
vision angles ψ. c Sample trajectories atΔ = 8 for ψ = π (top) and ψ = π/4 (bottom) in

the effective interaction zoneReff =Rint/2.0 (dashed circle), exhibiting characteristics
of fractional Brownian motion and Lévy-like walk, respectively. Only trajectories
that successfully reach the exit are considered and we average over all agents.
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transition may be understood as motility-induced jamming20, where
the repulsive conservative potential of standard ABPs is replaced here
by a vision-assisted steering avoidance. At smaller vision angles, the
system maintains the free-flow regime even at large inflow, as agents
allow for closer proximity (see Fig. 8), preventing congestion.
Increasing ρ (i.e., Γ) causes a decrease in the average velocity due to
increased scattering in the interaction regime, as seen in Fig. 6b. In
particular for the jammed state (ρ ≳ 1.0), a sharp reduction in the
velocity is seen. As before, the jammed state has a heightened value of
α due to the long-time persistent motion of particles within perco-
lated clusters. It is important to note that in our model, we do not
observe a reduction in flow at high densities, with most of the data
falling within the ‘free-flow’ regime of the fundamental diagram. This
outcome is not entirely surprising, given that our model assumes
point-like particles without velocity modulation—an assumption that
holds primarily in the semi-dense regime.

Interestingly for ψ = π/2, different movement strategies emerge as the
inflow rate Γ is increased. For instance, at Γ = 2.0 and 4.0, a rotation state
develops wherein agents follow other agents with the same goal and form a
vortex around the center of the interaction, as seen in Fig. 6c and the local
density plots in Fig. 7a, b. This rotation state also allows for lower repulsion
as each particle is largely aligned with the neighbors, see Eq. (5) in “Meth-
ods”. This motion also creates an ‘eye’ in the center, marked by agent
depletion (see Fig. 7 and Supplementary Movie 4), suggestive of traffic at a
roundabout. This is consistent with the observation of several studies that

show the stabilization of pedestrian flows at intersections in presence of an
obstacle27,44. Thus, the self-organized development of the ‘eye’ in the center
in our simulations leads to a stabilization of flow. This emergent global state
offers insights into discerning effective transport strategies contingent upon
the pedestrian volume.

Conclusions
Drawing inspiration from active matter models in biophysics, we
have introduced a new approach to simulating pedestrian motion,
which employs a vision-based steering mechanism of agents in
combination with goal fixation. In contrast to the Social Force Model
and its derivatives which employ forces for obstacle avoidance and
goal following, we employ non-reciprocal interactions between
agents, with local vision-based self-steering through torques that alter
the propulsion direction of the agents. The overdamped limit of the
Langevin equation mitigates artefacts arising from inertia effects and
Newton’s action-reaction principle, which is also inherent in force-
based mechanistic pedestrian models. This facilitates a more realistic
description of the motion of pedestrians, who ‘steer’ their movement
direction, rather than face repulsive/attractive forces, with the former
navigation strategy likely dominating in low-density scenarios. Up to
now, collision avoidance has been studied theoretically mostly for the
much simpler case of bi-directional pedestrian flows. In contrast, we
investigate here a multi-stream intersection scenario, inspired in part
by recent antipode experiments. The simplicity of our model allows

Fig. 7 | Flow illustration for jamming and roundabout motion. a, b Local density
ρloc (single stream) with vision angle ψ = π/2 and inflow a Γ = 0.5 and b Γ = 4. As
inflow Γ increases, a rotation phase with an asymmetric density distribution
develops, as seen in (b). c,dLocal densitywithψ=π and inflow c Γ=0.4 andd Γ=0.6.
At Γ = 0.4, there is no jamming, as can be seen by the ‘uniform’ inflow and outflow
density lines. However, when Γ ≥ 0.5, the system enters a jammed state, character-
ized by the depleted outflow lines and enhanced local density at the inflow. In all

panels, agents enter at the left and exit at the right, and data is shown for a single
agent stream. The local density is estimated as ρloc ¼ NδTτr=ðρ0δTR2

0Þ, where
NδTτr=ðδTR2

0Þ is the average local density in a region of area R2
0, and NδT is the total

number of agents counted in time δT = 2500τr. The data is normalized by the local
density at the inflow estimated as ρ0 = 6Γτr/(2πRintR0).
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us to isolate the effects of different parameters such as relative
maneuverability Δ, vision angle ψ, and inflow rate Γ on the collective
dynamics of the agents.

In the state diagram, four classes of motion patterns of semi-
dense crowds are obtained, in which agents are weakly interacting,
localized flocking, strongly scattering, and jamming. Notably, the
jammed state for ψ = π is characterized by percolating clusters, which
qualitatively resembles the behavior of pedestrians joining forces to
penetrate through highly congested areas. Despite of large differences
in the global collective behavior, the complex interplay of inter-agent
interactions and goal fixation, the observed super-diffusive motion of
the agents can be explained using fractional Brownian motion and
Levy walks. For increasing inflow, agents display distinct collective
behaviors based on their vision angle, such as the development of
roundabout motion at ψ = π/2 and a jammed state at ψ = π.
Remarkably, the fundamental flow diagram is found to be universal
for different vision angles. Notably, our study captures distinct
behaviors such as percolated clusters, roundabout motion, and sub-
ballistic movement, even at high relative maneuverability Δ, which
can all be directly attributed to the goal-following behavior of the
agents, in combination with the distinction between on-coming and
co-moving agents in collision avoidance. In contrast, agents without
goal orientation, but with similar maneuverability exhibit purely
diffusive motion31.

Our study lays the foundation formore detailedmodeling of systemsof
interacting cognitive agents, such as pedestrian and animal groups. By
introducing additional torques—related to boundaries or local alignment
and group-following interactions—various scenarios, including navigation
through channels, flocking, and swarming can be studied.We have focused
on ‘semi-dense’ crowds, where the assumption of constant speed is a very
good approximation. An important next step will be the incorporation of
both velocity adaptation and excluded volume effects to generalize the
model for higher crowd densities. The former can be addressed in the same
spirit as the well-known quorum-sensing mechanism used for ABPs,
wherein the agents ‘speed’depends on the local densityof neighbors, and the
latter by using Lennard Jones interactions. Lastly, it would be interesting to
study experimentally the dependence of the fundamental flow diagram on
vision angle.

Methods
Simulation details
All influxes are spaced at the same angular distance from each other
and agents enter with frequency v0/R0. At each inflow, the start
position r0 = (x0, y0) of the incoming agent on the circle is deter-
mined by first sampling a number x00 from a normal distribution
x00 � N ð0; σ2Þ with zero mean and standard deviation σ = πRint/18 to

generate the intermediate point r00 ¼ ðx00; y00Þ using x020 þ y020 ¼ R2
int .

The desired point is then generated by a rotation, r0 ¼ Rθr
0
0, where

θ = 0, 2π/3, −2π/3 for the red, green and blue streams, respectively.
The value of σ determines the approximate interaction radius Reff, via
the relation Nstream(6σ) ≃ 2πReff. For our choice of σ = πRint/18,
this results in an effective minimum interaction zone of radius
Reff = Rint/2. An agent crossing the boundary of the interaction zone
at any point is removed from the simulation (absorbing boundary).

The equation of motion is solved using the Velocity-Verlet scheme
suitable for stochastic systems45, with a time step dt = 0.0005τr, and a total
time of T = 4000τr. We ensure overdamped dynamics with the choice of
γ = 100, so thatm/γ≪ τr.

Path-length distribution for straight paths
In the absence of any interactions, we can estimate the path length
distribution using simple geometric arguments. As described in the
“Simulation details” section above, the agents are initiated at a position
ðx00; y00Þ for the central axis of the inflow along y-axis. At each inflow, x00 is
drawn from a Gaussian distribution N(0, σ2), with mean zero and standard
deviation σ, and x020 þ y020 ¼ R2

int. The path length for an agent (non-
interacting) starting at ðx00; y00Þ is then given by Lp = 2L, where
L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
int � x020

p
. We can estimate the cumulative distribution function

FL(l), i.e., the probability that L ≤ l, as

FLðlÞ ¼ PðL≤ lÞ

¼ Pðjx0j≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
int � l2

q
Þ

¼ 1þ ψð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
int � l2

q
Þ � ψð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
int � l2

q
Þ

ð14Þ

where ψ(x) is the cumulative distribution function of x0. The probability
distribution function fL(l) can then be calculated using f LðlÞ ¼ F0

LðlÞ to give

f LðlÞ ¼
2l

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðR2

int � l2Þ
q exp½�ðR2

int � l2Þ=2σ2� ð15Þ

The result in Eq. (15) compared with the simulation data in Fig. 4b of the
main text.

Cluster polarization
The average cluster polarization Pc is calculated as

Pc ¼
1
Nc

X
i2C

ei

�����
�����

* +
c

; ð16Þ

Fig. 8 | Nearest-neighbor distances. Mean nearest
neighbor distance dneigh of agents for increasing (a)
Δ [fixed Γ = 1] and increasing (b) Γ [fixed Δ = 1] for
various vision angles, as indicated.
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where C represents the set containing indices of particles within the same
cluster, ei is the orientation vector of the particle, Nc is the cardinality of C,
and the average is over all clusters.

Fractional Brownian motion
Fraction Brownian motion is a continuous-time Gaussian process X(t)
defied as39,46

XðtÞ ¼ σ

ΓðH þ 1=2Þ
Z t

0
ðt � sÞH�1=2dWðsÞ

�
þ
Z 0

�1
½ðt � sÞH�1=2 � ð�sÞH�1=2�dWðsÞ

� ð17Þ

where dW(s) is the standardWiener process, σ is the noise strength, Γ(z) is
the Gamma function, and 1/2 < H < 1 is the Hurst exponent. The Hurst
exponent is a measure of the ‘memory’ of the noise, with H > 1/2 for
positively correlated increments, H < 1/2 for negatively correlated incre-
ments, andH=1/2 for uncorrelated increments (Browniannoise). Consider
R(t) = (X(t), Y(t)) to the be position of the particle at time t, then using the
relations

eðtÞ ¼ dRðtÞ
dt

; σ2 ¼ DH

Γð2H þ 1Þ ; ð18Þ

it can be shown that the velocity auto-correlation has the form46–48

CðtÞ ¼ dDH

Γð2H � 1Þ t
2H�2 ð19Þ

with the corresponding MSD

hr2ðtÞi ¼ 2dDH

Γð2H þ 1Þ t
2H ; ð20Þ

where d = 2 is the spatial dimensionality. Here we have assumed that both
X(t) and Y(t) are independent Gaussian processes described by Eq. (17).

Nearest neighbor distance
The average nearest neighbor distance dneigh of agents, is defined as

dneigh ¼ hminðrijÞii ð21Þ

where minðrijÞ is the distance to the closest neighbor j of particle i and the
average is over all particles. Figure 8a shows the plot of dneigh with Δ for
different vision angles. The slope of the curve changes from positive for
ψ < π/2 to negative forψ> π/2, i.e., theminimum separation for small vision
ranges decreases for increasing avoidance. This occurs because for small
vision angles, localized flocking occurs. Upon alignment, two neighboring
agents can be arbitrarily close without noticing the presence of the other.
The spatial extent of ‘ignorance’ increases as the vision angle becomes
smaller. As soon as ψ > π/2, a least one pedestrian in approaching or co-
moving pairs will notice the other, implying the absence of any ‘ignorance’
regimes. This imposes a minimum separation distance dneigh ≈ Rv equal to
the vision range. Similarly, Fig. 8b shows dneigh for different inflow rates.
Clearly, dneigh depends in a complex way on the inflow, vision angle and
relative maneuverability, and thus also implies that the length scales for the
analysis of properties such as cluster size distribution and average density
must be chosen suitably. Guided by the plots in Fig. 8, we choose Rcut ≃ Rv
and Rcut ≃ R0 for the cluster analysis for vision angles ψ = π and ψ = π/4,
respectively. Similarly, for the calculation of the average density at different
inflowrates,we assume that eachpedestrianoccupies approximately an area
of πd2neighðΓ;ψÞ. Such a choice becomes necessary, due to the large

differences the minimum inter-agent distances for the different parameter
choices and the absence of any inherent length scale as we have no excluded
volume effects.

Characterization of successful exits
For simplicity, we describe the characterization of a ‘successful exit’ for
agents from the inflow with the central axis along the y-axis, i.e., the ‘red’
stream in Fig. 1 of the main text. The results hold for other streams via a
rotationof the axes. For the centerof the stream(the inflow) lying at (0,Rint),
i.e., θ0 = π/2 in polar coordinates, agents exiting the interaction circle for
angles θ ∈ (θ0 + π − δ/2, θ0 + π − δ/2) are considered to have crossed
successfully.Note that here δ is the angularwidth of the ‘region’of successful
exits, whichhas amaximumvalue of δmax = 2π/Nstream. In the analysis of the
data presented in the main text, we have chosen δ = π/2, considering the
finite width of the other streams.

Data availability
The data that support the results of this study are available from the cor-
responding author upon reasonable request.

Code availability
The code employed in this study is available from the corresponding author
upon reasonable request.
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