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Abstract  

The cerebellum plays important roles in motor, cognitive, and emotional behaviors. Previous 

cerebellar coordinate-based meta-analyses and mappings have attributed different behaviors to 

cerebellar subareas, but an accurate behavioral topography is lacking. Here, we show 

overrepresentation of superior activation foci, which may be exacerbated by historical 

cerebellar neglect. Unequal foci distributions render the null hypothesis of standard activation 

likelihood estimation unsuitable. Our new method, cerebellum-specific activation-likelihood 

estimation (C-SALE), finds behavioral convergence beyond baseline activation rates. It does 

this by testing experimental foci versus null models sampled from a data-driven, biased 

probability distribution of finding foci at any cerebellar location. Cerebellar mappings were 

made across five BrainMap task domains and thirty-five subdomains, illustrating improved 

specificity of the new method. Twelve of forty (sub)domains reached convergence in specific 

cerebellar subregions, supporting dual motor representations and placing cognition in 

posterior-lateral regions. Repeated subsampling revealed that whereas action, language and 

working memory were relatively stable, other behaviors produced unstable meta-analytic 

maps. Lastly, meta-analytic connectivity modeling in the same debiased framework was used 

to reveal coactivation networks of cerebellar behavioral clusters. In sum, we created a new 

method for cerebellar meta-analysis that accounts for data biases and can be flexibly adapted 

to any part of the brain. Our findings provide a refined understanding of cerebellar involvement 

in human behaviors, highlighting regions for future investigation in both basic and clinical 

applications. 
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Introduction  

The cerebellum has received considerable attention due to its involvement in modulating 

activity of wide-spread regions of the brain1–5. This perspective is consistent with current 

neuroscientific paradigms that conceptualize the brain as a complex array of interconnected 

networks rather than discrete, isolated areas6. Although the cerebellum has traditionally been 

associated with motor control, consensus is now that it plays integrative roles in brain-wide 

networks spanning behavioral domains (BDs) including emotion, language, and social 

cognition across development and aging7–13. 

 

The cerebellar circuit is organized into relatively separated functional modules that are 

connected to diverse extracerebellar areas in reciprocal loops14–23. This evolutionarily highly 

conserved organization24–31 might facilitate cerebellar involvement in various human behaviors 

and brain networks. This is speculated to involve very similar computations at the algorithmic 

level32–38 (although see compelling arguments for cerebellar algorithmic diversity39,40). 

Cerebellar functional topography is hence suggested to largely mirror its connectivity18,24,41. 

The chief cerebellar computation likely involves calculating error signals by mismatching 

predicted behavioral outcomes with actual sensory input42–44. This error signal then alters 

extracerebellar activity, a process which over time facilitates learning of smooth movements 

and other behaviors3,38. The cerebellum has massive bandwidth, with fifty billion granule cells 

responding to approximately forty million neocortical neurons (a thousand-to-one ratio)39,45,46. 

It responds to changing inputs through modulation of neuronal excitability at a manifold of 

LTD- and LTP-modulated synapses47, including prominently LTP at Purkinje cell-parallel 

fiber synapses33–37,48. This, alongside the repetitive nature1 of its circuit and connections to the 

basal ganglia and cerebrum17,49,50, make the cerebellum an exemplary structure for (supervised) 

learning of highly specific representations across behaviors51,52. 

 

Decisively mapping cerebellar functions to subregions is, however, challenging. First, the 

small cerebellum (10% of brain volume) and its many folds25,45,53 exaggerate partial volume 

effects at relatively crude neuroimaging resolutions. Spatial inaccuracies are magnified in the 

case of cerebellar spatial misalignment54, compounding interindividual variability in cerebellar 

behavioral mapping55,56. Secondly, the signal-to-noise ratio (SNR) in the cerebellum is 

generally low, with common physiological noise and artifacts due to the location in the head 

and proximity to blood vessels57. This makes it difficult to reliably obtain functional signals. 

Lastly, blood-oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) 
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in the cerebellum may mostly reflect inputs from the mossy fiber system39,57–59, further 

complicating its meaning for cerebellar function relative to the rest of the brain.  

 

Several strategies to overcome these issues exist. First, high-resolution mapping in few 

individuals can reveal accurate, individualized resting-state topographies55. Next, deep task 

data across multiple individuals can map behaviors to subregions, dividing the cerebellum into 

non-overlapping regions. These intend to be maximally homogenous internally, and maximally 

different to others. Twenty-six different task activations across twenty-four individuals 

revealed how cerebellar functions readily cross lobular boundaries60. This parcellation 

effectively maps cerebellar functions, as revealed by high intra-region homogeneity and inter-

region difference60,61. Moreover, adding large-scale resting-state data can improve 

discriminability of regional borders56. Functional fusion62 with task-based data improved 

inferences made solely from resting-state data63,64. Lastly, high-quality task-based mapping of 

specific behaviors replicated the established double motor representation and additionally 

revealed three separate working memory, social cognition, and language mappings65. Together, 

these (among other) parcellations and mappings have revealed much of the known cerebellar 

functional topography. They paint a somewhat coherent picture: motor representations are 

consistently located in both anterior and posterior-inferior regions, whereas cognitive functions 

tend to occupy posterior-lateral regions such as crura I-II, but also inferior lobules IX-X. 

However, many aspects differ substantially: across maps different behaviors may be included 

or omitted, and the same cerebellar subregion ascribed quite different behaviors. 

 

Crucially, although parcellations reveal relevant aspects of cerebellar behavioral mapping, 

creating a comprehensive behavioral topography involves combining task data from much 

larger samples. Mapping rather than parcellation approaches are preferred as they allow 

behavioral overlaps and do not impose full cerebellar coverage. Notwithstanding, for synthesis 

of task-based functional imaging findings into a common behavioral map, one needs to 

overcome the challenges noted above. Coordinate-based meta-analysis (CBMA) approaches 

such as activation likelihood estimation (ALE)66–69 fit this purpose. Specifically, ALE finds 

brain regions that are activated above chance, implying being consistently involved, in a task 

or task domain. In other words, when activity in a task (domain) converges despite imaging 

inaccuracies, this implies highly consistently activity in that region. Repeated meta-analyses 

across random subsets of experiments within a task (domain) can then be used to understand 

how consistently experiments support the mapping. 
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CBMAs, both at the whole-brain-level and using the cerebellum as region-of-interest (ROI), 

have provided complementary understanding of cerebellar functions. Studies at the whole-

brain-level have provided insight on whether the cerebellum and its subregions are activated 

above chance in functional processes. In this way, cerebellar involvement in, for example, 

audition70,71, verbal working memory72, and cognitive control73,74 has been established. 

CBMAs within the cerebellar ROI have enabled localization of behaviors to cerebellar 

subareas, including motor (learning) behavior, emotion, and several aspects of social and 

executive cognition75–82. CBMAs have been used to map cerebellar topography more 

comprehensively, providing indication that diverse motor and cognitive functions occupy 

distinct cerebellar subregions76. Comparable analyses have been performed within the socio-

cognitive domain at larger scale78,79. Recognizing that cerebellar behavioral topography 

directly reflects brain-wide connectivity, meta-analytic connectivity modeling (MACM) 

revealed coactivation networks of two structural cerebellar subdivisions83, inspired by the 

primate literature84. Moreover, clustering of MACM maps has been used to parcellate the 

cerebellum into behaviorally relevant communities85.  

 

Yet, despite this extensive work, several issues persist. First, small sample sizes and focus on 

specific behaviors or task domains limit interpretation from early meta-analyses. Next, 

structural cerebellar subdivisions were used as connectivity seeds in MACM83,85. However, 

lobules may have limited utility in defining functional borders, which readily cross lobular 

boundaries60. A recently published meta-analytic atlas86 of NeuroSynth activation 

coordinates87 addresses these issues, but three remain open. First, though NeuroSynth is the 

largest available dataset of brain-wide activation coordinates, labeling of experimental contrast 

was done automatically and no sample size information was available. Therefore, the smaller, 

but manually curated BrainMap database88 is preferred. Secondly, any atlas assumes that every 

cerebellar voxel is involved in just one function. Contrasting, the mapping studies discussed 

above indicate that overlap of cerebellar involvement across behaviors is expected. Hence, 

accurate cerebellar mapping should not be limited by this constraint. Thirdly and crucially for 

the current study, the meta-analytic atlas does not address the marked cerebellar reporting 

biases in the neuroimaging literature83,86,89 that need to be overcome for accurate behavioral 

mapping of the cerebellar cortex. 

 

Specifically, a historical experimental design choice has seen the cerebellum often not being 

retained in the field-of-view (FOV) of functional scans. Shifting the FOV to frontal regions 
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improves data quality locally, at the cost of cerebellar coverage77,79,83,89. Likely connected to 

this historical neglect a substantial, accentuated bias has made its way into the neuroimaging 

literature86. Critically, foci are strongly skewed to superior cerebellar locations. Biased neglect 

appears to have exacerbated the inherently unequal distributions of foci across the brain. This 

means that the classic implementation of ALE may readily report convergence in overreported, 

superior cerebellar regions. Convergence in underreported, inferior regions is much less likely. 

Often, one of two strategies have been adapted in cerebellar CBMAs: 1. include all data and 

report convergence for the biased sample of foci; or 2. manually confirm full cerebellar 

coverage. Unfortunately, the former option overestimates convergence in oversampled regions 

(and vice versa). The latter, far more common strategy, leads to more accurate but possibly 

smaller-sampled or costly CBMAs, due to excessive manual work and the loss of many 

potentially eligible experiments. Additionally, it still does not guarantee that foci will be 

distributed equally. 

 

In sum, despite the deep and diverse literature, an accurate and comprehensive meta-analytic 

map of cerebellar activations across BDs is lacking. Crucially, this map provides answers to 

the following questions: (1) For a given behavior, what cerebellar subregion(s) show activity 

convergence above chance relative to the rest of the cerebellum? and (2) For a given behavior, 

what area(s) of the brain are coactivated with the cerebellar subregion(s) [found in (1)] above 

chance? In this study, we create a novel implementation of ALE, here called cerebellum-

specific ALE (C-SALE), that updates its null hypothesis to account for reporting biases. In this 

way, we can incorporate all data regardless of coverage, nonetheless overcoming literature 

reporting biases. The new method aims to overcome the limitations of both strategies discussed 

above. To create the map, we considered whole-brain studies, examining the largest set of 

cerebellar foci (many non-cerebellar-focused studies nonetheless report it), and recognizing 

cerebellar activations in relation to whole-brain activations. By then treating the cerebellum as 

ROI and constructing the null model within it, we can answer the main question of our study: 

where in the cerebellum is convergence of activity for each behavior elevated above baseline 

cerebellar activations?  

 

Results 

Study inclusion 

We identified behavioral datasets by querying the BrainMap database for task-based fMRI and 

positron emission tomography (PET) data in healthy adults in February 2024, creating eligible 
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datasets for five BDs) and thirty-five subdomains. These domains refer to the division of tasks 

into human-understandable subcategories by the BrainMap team. Each subdomain includes 

tasks describing a distinct behavioral construct, and belongs to a more global BD (Action, 

Cognition, Emotion, Interoception, Perception)88,90. Note that a single task or experiment can 

map to several subdomains, and with that, BDs. 1,129 unique studies (16,410 participants; 

4,783 cerebellar foci) were included. For the overall number of experiments, coordinates, and 

subjects included in each BD and subdomain C-SALE analysis, see Supplementary File 1. 

 

Assessing improvements of C-SALE over classic ALE 

Previous work has used ALE to map activations in behavioral (sub)domains to cerebellar 

subareas. The regular ALE method assumes equal spatial distributions of reported effects 

(foci). However, visualizing locations of cerebellar foci reported in the BrainMap dataset 

compared to voxels along the z-axis illustrates substantial spatial biases (Figure 1a). Foci were 

strongly skewed towards superior regions. Along the x- and y-axes, distributions of foci largely 

mirrored those of cerebellar voxels (Supplementary Figure 1a, b). It appeared that vermal 

foci were somewhat overrepresented (Supplementary Figure 1a). Whereas classic ALE 

assumes spatial homogeneity of foci, C-SALE considers the observed, unequal probabilities of 

finding foci at any voxel (Figure 1b). This baseline cerebellar probabilistic foci distribution, 

generated from domain-general foci reported in the BrainMap dataset, revealed two substantial 

probability hotspots in bilateral anterior lobules. Inferior-posterior regions had lowest 

probabilities, and the distribution was generally left-right symmetrical. Note that unequal 

distributions of reported effects are not unique to the cerebellum, but common across the brain 

(Supplementary Figure 2). 

 

Comparing ALE and C-SALE mappings 

Whereas classic ALE constructs null models by sampling truly random cerebellar gray matter 

(GM) coordinates, C-SALE uses the probability distribution to sample pseudorandom GM 

coordinates, weighted by the probability distribution. In essence, comparing peak activation 

coordinates within a behavioral (sub)domain to this null model tests where in the cerebellum 

activity converges beyond baseline cerebellar activity. Comparing BD maps for classic ALE 

(Figure 1c) and C-SALE (Figure 1d) revealed improvements of our new method. First, 

whereas in ALE most of the superior half of the cerebellum reached convergence invariant of 

BD, in C-SALE convergence was only reached in specific locations for Action. Action reached 

convergence in bilateral lobules V-VI and right VIIIa, b. Examining unthresholded z-maps for  
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Figure 1: Improvements of the new cerebellum-specific ALE method over classic ALE for cerebellar meta-analysis. 

Methodological assessment of cerebellum-specific activation-likelihood estimation (C-SALE). (a) Maps the distribution of 

reported effects versus the number of cerebellar voxels across the Z-axis (superior (Z = 0) to inferior (Z = -70)). (b) Illustrates 

the null hypotheses of classic ALE (smaller flatmap) and C-SALE (larger flatmap). Whereas classic ALE assumes spatial 

homogeneity of reported effects (foci), C-SALE uses the heterogeneous distribution of foci found across all experiments in 

the BrainMap database as null assumption. Voxel- (C-SALE) and cluster-wise (classic ALE) statistical significance was 

determined by comparing observed values versus 10,000 random foci distributions sampled from either distribution. (c, d) 

Show differences between resulting meta-analytic maps from classic ALE (c) and C-SALE (d). Unthresholded z-maps are 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2024. ; https://doi.org/10.1101/2024.10.31.621398doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.31.621398
http://creativecommons.org/licenses/by-nc-nd/4.0/


Magielse et al.  Cerebellum-specific meta-analyses 

shown with a black outline of the clusters that reached convergence (pvoxel < .001 and k = 50 for C-SALE and pcFWE. < .05 

using a height threshold of pvoxel < .001 for classic ALE) overlaid. Behavioral domains (BDs) are ordered by sample size from 

small to large. Note that in (d), only specific cerebellar subregions, including an inferior region, reach convergence (within 

Action). (e, f) Show distributions of correlation coefficients between pairs of subdomain x subdomain unthresholded z-maps, 

for classic ALE (e) and C-SALE (f), respectively. Note that the median correlation for regular ALE is .63, whereas for C-

SALE it is .01. Abbreviations: KDE = kernel density estimation. 

 

BDs illustrate peaks of (subthreshold) convergence in inferior regions (Figure 1c, d). Second, 

we compared spatial correlations of unthresholded maps for pairs of BDs and subdomains. 

Whereas some spatial correlation should be expected across behaviors, excessive correlations 

indicate a lack of specificity. ALE subdomains illustrate such excessive (median = .63) 

correlations (Figure 1e). C-SALE normalizes the correlations (median = .01) (Figure 1f). Full 

hierarchically clustered correlation heatmaps for domains are reported in Supplementary 

Figure 3a, b and heatmaps for subdomains are reported in Supplementary Figure 4. Both 

illustrate that whereas classic ALE finds high correlations across combinations, C-SALE finds 

high correlations between related behaviors only. As we established the improved performance 

of C-SALE, we continue to report results for this method. In turn, the BD maps reported in 

Figure 1d also represent BD-level results. 

 

Cerebellum-Specific Activation Likelihood Estimation (C-SALE) 

Next, we use C-SALE to find if and where activations in each behavioral (sub)domain 

converged. C-SALE results for BDs (Figure 1d; Figure 2a) and subdomains (Figure 2b, 

Figure 3) are reported on the cerebellar flatmap. For both, unthresholded maps are plotted 

alongside an outline of thresholded (pvoxel < .001 and k = 50) clusters (Figure 1d; Figure 3). 

Binary locations of convergence for BDs are illustrated in Figure 2a, and Figure 2b illustrates 

how subdomain convergence maps to the BD they are organized under in BrainMap. For BDs, 

full unthresholded and thresholded (pvoxel < .001 and k = 50) z-maps are reported in 

Supplementary Figure 4a-c. Full z-maps for subdomains are provided in Supplementary 

Figures 6-8. For convenience, we report cluster sizes (in mm3) and peak coordinates (in MNI 

ICBM-152 space91) for every C-SALE analysis in Supplementary File 1. 

 

Behavioral subdomain topography of the cerebellum 

Behavioral subdomains aim to capture more specific behavioral constructs. Hence, after 

investigating BDs, we investigated cerebellar subregional convergence in subdomains. 

Convergence was more readily reached in subdomains (eleven out of thirty-five; Figure 3). As  
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Figure 2: Locations of convergence across behavioral domains. (a)  Summary of converging cerebellum-specific ALE 

maps for behavioral domains (BDs). Binary locations of convergence (pvoxel < .001 and k = 50) are plotted to a common 

flatmap. Only Action reached convergence. The next panel shows the cerebellar lobular definition of Larsell54,92,93 (top) and a 

color mapping for BDs (bottom). Both legends apply to a and b. In (b), subdomain results (see Figure 3) are summarized by 

BD. Binary locations of converging subdomains, colored by the BD they belong to, are plotted onto a common flatmap to 

highlight spatial overlap. 
 

Figure 2b illustrates, these subdomains belonged to Action, Cognition, Emotion, and 

Perception. Clusters were spread relatively equally across left-right and inferior-superior 

regions. Subdomains within a BD tended to map to distinct cerebellar subregions. Accordingly, 

subdomains were first ordered by the BD they belong to, then by sample size (Figure 3). Within 

Action, Observation, Speech Execution, and Execution reached convergence. Observation 

converged in two clusters in left VIIb and VIIIa, Speech Execution in left V-VI and right VI, 

and Execution in bilateral (including vermal) V-VI and right VIIb-VIIIb. Next, within 

Cognition, Social Cognition, Working Memory, and Language converged. Social Cognition 

converged in bilateral crura I-II, Working Memory in right VI-crus I, and Language in left VI. 

Sadness was the only Emotion subdomain to converge, in right VI-crus I. Within Perception, 

Vision - Motion converged in right VI, whereas Vision - Shape and Vision overall converged 

in right V-crus I. Lastly, Somesthesis converged in left VI. 

 

Spatial stability of C-SALE maps 

Then, to assess how consistently behaviors map to cerebellar subareas, we performed a 

complementary set of repeated subsampling analyses. Specifically, we reran C-SALE analyses 

in fifty random subsets of experiments, comparing spatial correlations between each pair of 

subsample C-SALE z-maps within a (sub)domain. To account for the variability in the number  
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Figure 3: Cerebellum-specific ALE maps for behavioral subdomains. Unthresholded z-maps are shown with a black 

outline of the locations that reached convergence (pvoxel < .001 and k = 50) overlaid. Subdomains are first ordered by behavioral 

domain (alphabetically) and then by sample size (from small to large). The last panel shows the cerebellar lobular definition 

of Larsell, digitized into neuroimaging space by Diedrichsen and colleagues54,92,93.  

 

of experiments across (sub)domains, two complementary subsampling strategies were used for  

both BDs and subdomains: 1) n = 50 per subsample; and 2) nsubsample = 0.2 * n(sub)domain. For 

BDs, we additionally illustrated how stability develops along a range of absolute or 

proportional subsample sizes. The repeated subsampling datasets correspond to those reported 

in Supplementary File 1 but were only run for (sub)domains with nexperiments ≥ 100, leaving 

five of five BDs and seventeen of thirty-five subdomains. 

 

Spatial consistency of unthresholded maps 

Spatial correlations of unthresholded subsample maps revealed that most BDs (Figure 4a, b) 

and subdomains (Figure 4d, e) were moderately stable. First, BD mapping stability naturally 

increased as sample sizes increased (Figure 4a, b). This was partially driven by increasing 

proportions of overlapping experiments across subsamples, illustrated by the large increase in 

mapping stability between n = 25 and n = 50 subsampling for Interoception relative to other 
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BDs (Figure 4a). Varying the subsampling proportion allowed for comparison of mapping 

stability between BDs. Stability increased as subsampling proportions increased, generally 

doing so similarly across BDs (Figure 4b). Cognition and especially Action stood out for high 

stability: at .8 subsampling proportions, their median spatial correlations were .87 (SD ± .06) 

and .94 (SD ± .03), respectively. For Interoception (.81; SD ± .07), Emotion (.78; SD ± .08), 

and Perception (.70; SD ± .11) median spatial correlations were somewhat lower. For the full 

list of median correlations and SDs per configuration, see Supplementary Files 2-5.  

 

Consistency of voxel-wise cerebellar convergence 

We also assessed how consistently convergence exceeded the threshold (pvoxel < .001 and k = 

50). Specifically, we mapped subsamples per (sub)domain to a common flatmap, visualizing 

proportions of subsamples that reached convergence at each voxel for BDs (Figure 4c, 

Supplementary Figure 9) and subdomains (Supplementary Figure 10). Focusing on BDs, 

whereas unthresholded maps were rather comparable (based on relatively high spatial 

correlations (Figure 4b)), thresholds were only reached consistently in Action. Here, many 

voxels were significant across all subsamples for the .6 and .8 proportion subsampling (Figure 

4c, Supplementary Figure 9c). Even at the low .2 subsampling proportion, more than half of 

the subsamples reached convergence in many voxels (Supplementary Figure 9a). In other 

BDs, much fewer subsamples reached convergence, congruent with not reaching convergence 

in the main analyses (Figure 4c, Supplementary Figure 9). Perception and Cognition reached 

convergence in a substantial percentage of subsamples for the .6 (peak voxel = 26% of 

subsamples for both) and .8 (32% and 36%, respectively) subsampling proportions. Notably, 

within Emotion and Interoception, fewer subsamples reached convergence at the .8 proportion 

relative to the .6 proportion, indicating that these maps were highly unstable. These tendencies 

were similarly illustrated by subdomains. For full voxel-wise peak percentages of significant 

subsamples across (sub)domains, as well as sampling sizes and proportions, see 

Supplementary File 6. 

 

Correspondence of C-SALE maps to published cerebellar parcellations and mappings 

To contextualize our meta-analytical cerebellar mappings, we compare them with several 

established mappings and parcellations, including the cerebellar multi-domain task-battery 

(MDTB)60, mid-granularity hierarchical atlas56, seven-network resting-state atlas63, and 

functional gradients94 (Figure 5). Note that for continuous comparisons, spatial correlations 

were calculated between every C-SALE map and target map. For dichotomous parcellations,  
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Figure 4: Stability of cerebellum-specific ALE maps. To assess stability of cerebellum-specific ALE (C-SALE) maps, 

repeated subsampling analyses were performed. Two different subsample strategies were used for both behavioral domains 

(BDs) and subdomains. One sampled an absolute number of experiments for each subsample (a, d) and the other a proportion 

of overall (sub)domain sample size (b, e). For BDs specifically, we created fifty random subsamples of different fixed sizes 

and proportions (a, b). Then, all subsampled unthresholded z-maps within a BD (a,b) and subdomain (d, e), were correlated. 

(a) Shows spatial correlation between fifty random subsamples at different absolute sizes (n = 25, 50, 75, and 100) within 

BDs. In turn, (b) shows spatial correlations for different proportions of overall BD sample size (proportion (p) = 0.2, 0.4, 0.6, 

and 0.8). Stability of meta-analytic maps for all BDs increased at higher proportions, visually suggesting stability developed 

as a logarithmic function. However, stability within Action was higher even at low proportions, and appeared close to 

plateauing at the .8 proportion. To a lesser extent, stability of Cognition increased faster than other BDs with increasing 

subsampling proportions. This was especially evident at high (i.e., .8) proportions. (c) To highlight stability of thresholded 

(pvoxel < .001 and k = 50) z-maps, percentages of .8-proportion subsamples that reached convergence at any given voxel were 

mapped to a common flatmap per BD. This illustrated that, whereas unthresholded maps were stable at these proportions, 

convergence was only reached consistently in Action. Cognition subsamples only sometimes reached convergence in crus I. 

In (d, e) stability of unthresholded maps for subdomains are shown. Here, fifty random subsamples were used as input to C-

SALE, consisting either of fifty experiments per subsample (d), or of a number proportional to subdomain sample size (p = 

.2) (e). Whereas with increasing subdomain sample size (and thus decreasing proportion) stability decreased, Action Execution 

stood out as being remarkably stable. (e) Serves to compare subdomains. Generally, .2-proportion subdomain and BD (b) 

subsamples were similarly stable. Here, Action Execution was elevated above other subdomains. Notably, stable unthresholded 

maps (e.g., Action (Execution), Vision, Working Memory, and Language) reached convergence (Figures 1-3). 

 

heatmaps report mean z-values for each C-SALE map within each parcel, instead of 

correlations. For both strategies, the reported heatmaps were hierarchically clustered. Asterisks 

denote significant spatial correspondence after accounting for spatial autocorrelation (SA) and 

multiple comparisons (pvariogram, FDR = .05).  

 

First, MDTB60 comparisons revealed two main clusters, largely separating Cognition and 

Emotion from Action and Perception (including subdomains) (Figure 5a). Of 840 

combinations, sixty-eight correlated significantly. Notably, Social Cognition was spatially 

correlated with nine of fourteen maps. Math and Landscape Movie (Figure 5b) correlated with 

most C-SALE maps (nine of forty for both), whereas Theory of Mind and Verb Generation 

correlated with several C-SALE maps involved in Social Cognition and several aspects of 

Language. For the mid-granularity hierarchical atlas56 (Figure 5c), two main clusters separated 

Action (Execution) from all other (sub)domains (Figure 5d). Action C-SALE maps 

corresponded significantly to M2 and M3 parcels. Significant correspondence was also found 

between Action Observation and A1, Explicit Memory and D1, and Social Cognition and S3 

and S4. For putative behavioral labels of these parcels, see Supplementary Figure 11c. For 

comparisons with cerebellar resting-state atlases63,95, lobular definitions54,92,93, and functional 

gradients94, see Supplementary Results and Figures 11-13. Full correlations or mean 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2024. ; https://doi.org/10.1101/2024.10.31.621398doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.31.621398
http://creativecommons.org/licenses/by-nc-nd/4.0/


Magielse et al.  Cerebellum-specific meta-analyses 

Figure 5: Correspondence of cerebellum-specific ALE maps with King task maps and Nettekoven hierarchical atlas. 

To contextualize behavioral maps and relate them to popular cerebellar parcellations, we compared unthresholded cerebellum-

specific ALE (C-SALE) z-maps with the King multi-domain task battery (MDTB)60 (b) and the symmetrical mid-granularity 

Nettekoven atlas56 (c) that was merged across left and right parcels. (a) Illustrates spatial correlations between each 

(sub)domain’s z-map and group-level task activation map included in the MDTB’s publication60. Variograms were used to 

account for spatial autocorrelation (SA). Asterisks indicate significant correlations (pvariogram, FDR < .05). (d) Illustrates mean z-

values of each (sub)domain’s C-SALE map within each parcel. Asterisks indicate significant combinations (pvariogram, FDR < 

.05). Both heatmaps (a, d) were hierarchically clustered. For putative functional labels of the Nettekoven parcels in (d), see 

Supplementary Figure 11c. (b, c) were adapted from60, and56, respectively, after obtaining permission from the authors. 
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z-values, as well as p-values for all comparisons can be found in Supplementary File 7. 

 

Meta-analytic connectivity modeling 

Recognizing that much of cerebellar functional topography reflects connectivity, we last use 

C-SALE clusters as seeds for whole-brain MACM analyses, revealing brain-wide coactivation 

networks. Here, the overall set of analyses was restricted to (sub)domains showing 

convergence (pvoxel < .001 and k = 50) in C-SALE analyses (Action and eleven subdomains). 

Experiments within each (sub)domain were then restricted to those that had at least one 

coordinate within the regions converging in C-SALE analysis (Figures 1-3). To provide stable 

MACM analyses, an additional prerequisite was that at least seventeen such experiments 

existed96. This further restricted the set of valid analyses to four subdomains (Execution, 

Execution Speech, Working Memory, and Vision). For each analysis, the overall number of 

experiments and coordinates are reported in Supplementary File 8. 

 

Updates to the null hypothesis 

As for C-SALE, instead of assuming spatial homogeneity, we updated the null hypothesis of 

MACM to reflect the unequal probability distribution of finding foci across the brain 

(Supplementary Figure 2). This ensured that convergence in a behavior was assessed relative 

to baseline activity. Our implementation differs subtly from a previous implementation of 

MACM that accounts for unequal distributions of reported effects. Specific CoActivation 

Likelihood Estimation (SCALE) uses the set of coordinates in the relevant dataset to 

pseudorandomly sample null coordinates97. The current method uses a probabilistic space to 

sample biased coordinates. This has two primary advantages: 1. it incorporates sample sizes to 

recognize differential confidence in coordinates; and 2. it provides a smooth, continuous 

sampling space. 

 

Meta-analytic connectivity maps 

Ultimately, five MACM analyses were performed. Thresholded MACM (pvoxel < .001 and k = 

50) coactivation maps for all (sub)domains can be found in Figure 6. Unthresholded maps can 

be found on GitHub (see “Data Availability” and “Code Availability”). To aid interpretation 

of cluster locations, common cerebellar54,92,93, subcortical98, and cerebral cortical95,99 

parcellations are plotted in Figure 6a. MACM results for the Action BD across brain  
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Figure 6: Whole-brain coactivation networks from cerebellum-specific ALE clusters. Whole brain coactivation networks 

for behavioral domains (BDs) and subdomains. Specifically, the maps show results from meta-analytic connectivity modeling 

(MACM) using the whole-brain probability distribution for construction of the null models (see Figure 1, Supplementary 

Figure 2). Clusters of activity convergence in cerebellum-specific ALE (C-SALE) (Figures 2, 3) were used to restrict 

experiments for each MACM analysis (MACM seeds). Across the figure, black outlines are overlaid on the cerebellar flatmaps 

to illustrate the seed region. (a) Shows cerebellar, subcortical, and cerebral parcellations used to contextualize MACM maps. 
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These are the lobular atlas for the cerebellum54,92,93,100, a subcortical regional parcellation98, and cerebral cortical twelve-

network parcellation95. (b) Shows full MACM maps across cerebellum, subcortex, and cerebrum for the Action BD. (c-e) 

Show MACM maps for subdomains, for cerebellum (c), subcortex (d), and cerebral cortex (e), respectively. In (d) only Action 

Execution and Speech Execution are shown, as they were the only subdomains to reach subcortical convergence. Abbreviations 

(a): rh = right hemisphere; lh = left hemisphere; HIP = hippocampus; AMY = amygdala; pTHA = posterior thalamus; aTHA 

= anterior thalamus; NAc = nucleus accumbens; GP = globus pallidus; PUT = putamen; CAU = caudate nucleus. 
 

subdivisions are presented together in Figure 6b. For subdomains, cerebellar MACM results 

are reported with black outlines of the seeds (Supplementary Figure 14) overlaid (Figure 6c); 

those for the subcortex on 2D (MNI space91) mosaics (Figure 6d); and those for the cerebral 

cortex onto the 32k FSLR surface101,102 (Figure 6e). Cerebellar MACM maps illustrated 

increased regions of convergence relative to their seeds (Figure 6b, c). Although such patterns 

are expected, it is noteworthy that this revealed symmetrical coactivating cerebellar regions 

across Action (Execution) (both in left VIIb-VIIIb), Working Memory (left VI-crus I), and 

Vision (left V-crus I). Only Action, Execution, and Speech Execution converged in the 

subcortex (Figure 6b, d). All overlapped bilateral caudate and the left nucleus accumbens and 

thalamus. Whereas Action (Execution) convergence additionally somewhat overlapped the 

right nucleus accumbens and anterior thalamus, Speech instead overlapped the bilateral 

putamen (Supplementary Figure 15). Each of the (sub)domains converged in the cerebral 

cortex (Figure 6b, e). It is worth noting additional aspects of these maps. First, across Action, 

Execution, and Speech Execution, MACM maps were highly similar. Secondly, they were 

highly symmetric across the brain (Figure 6b-e). Whereas this also holds true for the 

cerebellum for Working Memory and Vision (Figure 6c), asymmetric clusters can be noted in 

the cerebral cortex (right for both) (Figure 6e). Overall, we showed that cerebellar behavioral 

clusters are systematically coactivated with distinct brain regions in cerebral cortex and 

subcortex. 
  

Discussion 

In the current study, we created a meta-analytic mapping of the cerebellum across forty 

behavioral (sub)domains. Specifically, we aimed to refine the cerebellar behavioral topography 

by using a new meta-analytic method to summarize large-scale behavioral imaging data while 

accounting for literature reporting biases. This facilitates performing accurate cerebellar meta-

analyses, also in data without full cerebellar coverage. We first describe the prominent 

literature bias in the distribution of reported effects (foci), likely exacerbated by historical 

cerebellar neglect. To overcome biases in foci, we created a new implementation of ALE, 
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called C-SALE. We detail how we incorporated reporting biases into an updated null model 

for both cerebellar and whole-brain meta-analyses. The new method greatly altered locations 

of convergence in the cerebellum. Notwithstanding, activity across human behaviors (the 

Action BD and eleven of thirty-five subdomains) converged onto distinct cerebellar 

subregions. Converging subdomains covered aspects of Action, Cognition, Emotion, and 

Perception. Subdomains belonging to each BD occupied distinct areas of the cerebellum: 

anterior and posterior motor representations were broken up by cognitive-emotional mappings 

in posterior-lateral lobes. Four Perception subdomains reached convergence in lobules V-crus 

I. However, most behavioral (sub)domains did not reach convergence despite illustrating 

distinct patterns of subthreshold convergence. Repeated subsampling revealed that behaviors 

mapped to subregions moderately stably across random subsets of experiments. Cognition, 

Perception, and especially Action (sub)domains stood out for having relatively consistent 

localizations. Connectedly, confidence in these stable localizations increased, and thresholds 

were more readily reached. Spatial correspondence to parcellations and mappings56,60,63,86,94,95  

revealed that converging clusters often mapped relatively strongly to one or several existing 

parcels or maps. Locations of subthreshold convergence also often colocalized significantly 

with (behaviorally) related parcels and maps. Lastly, MACM was performed to reveal 

coactivation networks for several aspects of Action, as well as Working Memory and Vision. 

 

Methodological implications of C-SALE for cerebellar mapping 

Classic ALE was unsuitable for cerebellar CBMA, since its null assumption (equally 

distributed foci)66 was violated. The unequal distribution of foci was likely exacerbated by 

incomplete cerebellar coverage. Previous cerebellar CBMAs have often – but not always – 

used cerebellar coverage as inclusion criterion. Thus, convergence may be overreported in 

superior regions (and vice versa), misassigning behaviors to cerebellar subregions. Given the 

probability hotspots, convergence in regions V-crus I may be most at risk of being 

overreported. For future CBMAs, we recommend accounting for unequal distributions of 

reported effects alongside explicitly verifying full (cerebellar) coverage. Although manually 

curated CBMAs often do the latter, the former is important to account for brain-wide 

heterogeneity in reporting patterns. Our method can be flexibly adapted to analyses at the 

whole-brain-level or any brain ROI. 

 

Recently, a similar cerebellar meta-analytical study was published86. Here, CBMAs across the 

NeuroSynth database87 resulted in a behaviorally relevant cerebellar parcellation. Whereas 
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NeuroSynth contains more articles (14,371 versus 3,406), BrainMap is manually indexed and 

includes information on sample size88, allowing assigning differential confidence to foci. 

Notably, the NeuroSynth study also reports a severe superior-inferior bias in reported effects, 

leading to exaggerated superior convergence. The authors discuss how their winner-takes-all 

strategy, comparing ALE scores at the voxel-level, protects against spatial biases86. Though 

this is an important step in cerebellar behavioral mapping, ALE scores still reflect a 

combination of true biological signals, different sampling efforts, sample sizes, and 

experimental consistency, alongside the biased baseline of reported effects. Our results, 

especially the subsampling analyses, suggest that each of these factors may play a – largely 

unknown – role in producing ALE maps. Hence, comparing ALE values, even at the same 

spatial location, will always favor some behaviors/ behavioral domains. Secondly, the 

underlying assumption that no biased and systematic relation between neglect of the 

cerebellum and task domains exists86 needs to be examined. Many have pointed out how the 

cerebellum has historically been neglected in non-motor functions (see primarily the consensus 

paper series7–13). We briefly explored this notion, mapping reported effect locations versus 

cerebellar voxels for each BD separately (Supplementary Figure 16). Although conflated by 

actual behavioral signal, increased inferior effects within Action suggests that full cerebellar 

coverage may be more common in this BD. This, however speculative, underlines the need to 

formally investigate biased cerebellar neglect and not assume a priori its absence (nor 

existence). 

 

C-SALE refines the cerebellar behavioral topography 

Twelve of forty behavioral (sub)domains reached significant convergence in specific cerebellar 

subregions. Importantly, this does not imply heightened regional activity relative to the whole 

brain but to the cerebellum. Briefly, our localizations support cerebellar subregional roles 

across a great diversity of behaviors, which supports a growing consensus7,8,10,11. Specifically, 

we report highly stable Action localizations (including Execution and Speech Execution) 

consistent with a dual motor mapping63,65,103. Additionally , these motor representations are 

broken up by bilateral cerebellar subregions dominantly involved in Emotion and 

Cognition65,78–80,82,104. These cerebellar regions, primarily crura I-II, have received 

considerable attention due to their role in integrative, transmodal networks across the 

brain18,24,105,106. These lobules are characterized by massive primate-general expansion25, 

perhaps exceeding that of the prefrontal cortex107, underlying their relevance for sophisticated 
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primate behavior. Lastly, we report converge within the Perception BD. We interpret the 

locations of convergence in cerebellar subregions relative to the whole cerebellum more 

exhaustively in the Supplementary Discussion. Note that we also discuss interesting patterns 

of subthreshold convergence, which should be interpreted as inconclusive speculation. In 

converging regions, we can be confident of the localization. For non-converging regions, more 

high-quality data will be necessary to assign behaviors confidently.  

 

Stability of cerebellar mapping differs across behavioral domains 

Next, we assessed stability of C-SALE maps. Action was highly stable: parts of the anterior 

representation reached convergence across all, and the posterior across most, subsamples. 

Cerebellar motor areas are stably, reciprocally connected to the basial ganglia and cerebral 

motor cortex across primates9,15,17,20–23,49,50. Such consistent connectivity may lead to consistent 

functional localizations18,41. Cerebellar parcellations have repeatedly placed motor 

representations in similar locations56,60,63,95, as have task-based localizations65 and precision-

mapping approaches55,64. Action (Execution) MACM corroborated consistency of the brain-

wide motor network63,95. Likewise, somewhat elevated consistency of Language (several 

aspects), and (Working) Memory, may be supported by connectivity. Language and memory 

are examples of functions with well-defined extracerebellar neural substrates. The cerebellum 

has extensive reciprocal connections with prefrontal cortex, thalamus, and cerebral language 

areas4,8,14–16,20,21,76,108. Structural connections with hippocampus109 and amygdala110 support 

cerebellar involvement in socio-effective shaping of motor-related behaviors111, and normal 

hippocampal functioning including memory and navigation109,112. 

 

Cerebellar functional connectivity can be organized along a unimodal-transmodal axis94,113,114 

(as can cerebral115,116 and whole brain113 connectivity). Gradients of functional abstraction117 

transcriptomic and molecular expression118,119, and granule cell physiology120 underline 

gradual organizational aspects of the cerebellar cortex. Relative to unimodal connectivity 

patterns of the motor brain network, cerebellar afferents in other behaviors may thus be more 

transmodal, eliciting activity across smaller, distributed cerebellar areas121. Each set of 

afferents may be part of relatively separate reciprocal networks involved in distinct functions 

(see: cerebellar modules122–124). Even adjacent modules can be involved in different functions, 

making it difficult to expose their functions using CBMAs. Emotion and Interoception, with 

low subregional preference, are good examples of domains where overcoming the issues of 

partial volume effects in the (small, folded, often misaligned54,100) cerebellum are especially 
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important. Even if these task domains elicit consistently elevated activity across small 

distributed or interdigitated cerebellar areas, the summarizing nature of CBMAs combined with 

these cerebellar challenges may preclude finding statistical convergence. Importantly, greater 

experimental consistency in e.g., Action, Language, Working Memory, and Vision may also 

lead to increased meta-analytic stability. Whereas there is a finite number of ways to perform 

motor, perceptive, and some cognitive behaviors, emotional and interoceptive behaviors may 

be more diverse, as may the ways to elicit and measure them. Together, low stability and 

differences between C-SALE mappings and previous CBMA clusters warn for caution in 

interpretation of small-to-intermediate-sized CBMAs. 

 

Limitations of the current study 

Several limitations of this study are important to consider. First, we could not monitor 

experimental consistency within (sub)domains. Each analysis may include experiments 

probing subtly different behavioral aspects and extents of overlap with other behaviors. 

Therefore, we could not fully disentangle experimental conditions from cerebellar 

organization. Typically, CBMAs start with a literature search, followed by manual text 

scanning to homogenize experiments88,125,126. Since this was not feasible, we focused on data-

driven interpretation of the largest possible sample. Consequently, every result is an 

opportunity for more specific research questions aiming to map behaviors more precisely. 

Experimental sample sizes per (sub)domain may increase after manual curation, as we 

combined all experiments within a study to – perhaps conservatively – prevent experimental 

overlap125. 

Next, decisively mapping behaviors to cerebellar subregions was no trivial task. 

Incongruencies with previous parcellations and mappings, and a lack of subsample stability 

show that complementary perspectives are necessary to understand cerebellar behavioral 

topography. We report many correspondences between C-SALE maps and behaviorally related 

aspects of mappings and atlases56,60,63,86,95, and between MACM maps and subcortical 

parcellations and cerebral networks95,98,99. However, many behavioral (sub)domains mapped 

moderately or not at all to previous parcellations. This implies that these (sub)domains may be 

poorly represented by current state-of-the-art parcellations. Importantly, the discriminatory 

performance of their borders makes parcellations useful for many applications. However, our 

findings suggest there is need for a large-scale behavioral cerebellar topography. It would 

ideally be created directly from full task-activation maps (not only peaks), span task domains, 
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and include many – diverse – individuals. Ultimately, substituting coordinate-based for map-

based meta-analyses (while still accounting for biases) may be the way forward. 

For the present study, low resolutions of older data in meta-analytic databases may 

ultimately limit accuracy of localizations. Scanning at 7T can greatly improve cerebellar 

resolutions, as can using cerebellum-optimized sequences127 and dielectric pads128. Although 

we may be close to limits of CBMAs in the cerebellum with current data, increased resolutions 

will improve localizations. High-resolution cerebellar data128,129 in many individuals can also 

help improve cerebellar alignments54, essential given the summarizing premise of CBMAs. 

 

Conclusion 

Here, we used the BrainMap database and an adaptation of the ALE method (C-SALE) to 

perform large-scale CBMAs across forty behavioral (sub)domains. Our findings underline the 

systematic omission of the inferior cerebellum in neuroimaging data. C-SALE overcomes these 

biases, improving accuracy of CBMAs even without full cerebellar coverage. We show that 

behaviors across Action, Cognition, Emotion, Interoception, and Perception converge onto 

distinct cerebellar subregions. Our maps refine functional subdivisions from previous 

mappings and parcellations. We also show that behaviors within Cognition, Perception, and 

especially Action (motor execution) map more systematically to cerebellar subregions, which 

may be related to cerebellar connectivity profiles and experimental consistency. In sum, we 

reveal a comprehensive meta-analytic topography of the cerebellum that implicates cerebellar 

subregional involvement across human behaviors. However, our new method also suggests that 

caution in interpretation of previous localizations, which may have been liberal or inaccurate, 

is warranted. To improve behavioral localizations in the future, we make available our methods 

for cerebellar or any other brain volumetric ROI. In closing, subareas of the cerebellum 

consistently activated in distinct behaviors offer putative regions of interest for functional 

imaging, neurostimulation, and ultimately diagnosis and intervention. 
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Methods 

Overview 

In this study, we leveraged the BrainMap database88 to pull the largest available sample of 

manually indexed fMRI and PET literature at the whole-brain-level. Comprehensive access to 

BrainMap data and metadata was authorized by a collaborative use agreement 

(brainmap.org/collaborations). From the database, we initially obtained data from 8,408 whole-

brain experiments (2,214 studies; 32,836 participants). Of these, 2,415 experiments (1,129 

studies; 16,410 participants) reported peak coordinates within the expanded cerebellar mask. 

After merging experiments within each study125, 1,129 unique experiments remained. From 

these, we constructed C-SALE maps across five BDs (Action, Cognition, Emotion, 

Interoception, and Perception) and thirty-five more fine-grained behavioral subdomains. These 

include several aspects of language and memory, fear and reward, and most of the outward 

senses. To recognize cerebellar clusters in relation to the whole-brain, we subsequently 

performed MACM. Findings at the cerebellar and whole-brain level were compared to existing 

parcellations. For C-SALE results specifically, we also assessed stability of cerebellar 

localizations across behavioral (sub)domains.  

 

Study Inclusion Strategy 

Experiments were included in C-SALE analyses based on the following criteria: 1. To construct 

a functional map of the general healthy population, only normal mapping studies that measured 

within-subject activation contrasts in healthy controls (no interventions; number of subjects 

eight to forty-four) using fMRI or PET were included 2. To localize behaviors to cerebellar 

subareas, only experiments with a peak coordinate within the cerebellar ROI were included. 

The cerebellar ROI was isolated using the 1 mm resolution cerebellar template54, dilated 6 mm 

in each direction (hereafter “dilated cerebellar mask”) to account for spatial misalignment 

across studies. This step also aimed to overcome cerebral cortical BOLD-bleeding. 3a. Separate 

datasets were created for the five BDs indexed in BrainMap. Only activation contrasts were 

considered, as deactivations often had insufficient numbers of experiments. Activation foci 

were limited to those within the mask in 2. and those included within each BD. 3b. Next, in the 

same way, datasets were created for subdomains indexed under the five BDs. 4. To prevent 

unjustly embellishing statistical power, it is important to prevent overlaps in included 

experiments125. Within the BrainMap database, single studies may contain multiple 

experiments with potential overlaps in experimental contrast and participants. Hence, we 

merged the coordinates within a study to represent a single experiment. This validated 
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approach130 minimizes within-group and within-experiment effects131, preventing overlapping 

experimental contrasts excessively contributing to convergence125. As empirical simulation 

indicates that seventeen or more experiments should be included for stable meta-analysis96 

ultimately five eligible BDs and thirty-five eligible subdomains (Nexperiments ≥ 17) datasets were 

created. 

 

Construction of behavioral cerebellar maps with Cerebellum-Specific ALE 

After collecting datasets for each sub(domain), we performed ALE for each using an in-house 

modification of the Neuroimaging Meta-Analysis Research Environment (NiMARE) version 

0.2.0rc3132,133. NiMARE is a Python package that facilitates programmatic interaction with 

BrainMap activation foci and performing CBMA based on, among other algorithms, ALE66,67. 

We added an efficient implementation of ALE using graphical processing units (GPUs) 

(github.com/amnsbr/nimare-gpu). This facilitated running the calculations of many 

permutations of ALE, and the multiple experiments therein, in parallel. These permutations are 

necessary to generate null samples for each meta-analysis, as described below. In the GPU 

implementation, calculations pertaining to individual permutations, experiments, and foci were 

parallelized at two levels, across GPU “blocks” (permutations and experiments) and “threads” 

(foci). Ultimately, parallelization was highly advantageous because of the high number of 

performed meta-analyses across different sub(domains) and subsample configurations. The 

GPU implementation led to considerable speed-ups of calculations when scaling the number 

of permutations and experiments. For example, we observed a speed-up of 101.3x in GPU 

versus central processing units (CPUs) when running a rather typical SALE analysis for 100 

experiments with 10,000 permutations (Supplementary Figure 17). 

 

Essentially, ALE tests the distribution of experimental activation foci against a null distribution 

that assumes random spatial associations across cerebellar GM. Put simply, it finds spatial 

locations where activations converge more than chance. However, visualizing foci, we 

observed strong spatial biases in reported effects (Figure 1a, Supplementary Figure 1). These 

biases renders the standard null hypothesis (Figure 1b) unsuitable66,67. Hence, we aimed to 

account for biases by incorporating the distribution of foci into the null model against which 

datasets were tested. Our approach is comparable to the SCALE approach used for MACM97. 

Since we here adapt this approach to the cerebellum, we refer to it as cerebellum-specific 

activation likelihood estimation (C-SALE). Note that contrary to this name, the method can be 

flexibly adapted to any brain volume. To assess improvements of the new method, we also ran 
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BD-level analyses with standard ALE. Its specific methods are discussed here first. For full 

illustration of the commonalities and differences between classic ALE and C-SALE, see 

Figure 7. 

 

Figure 7: Commonalities and differences across classic ALE and cerebellum-specific ALE methods. Full pipelines for 

both the classic implementation of ALE and the new method, cerebellum-specific ALE (C-SALE). (a-c) ALE score map 

calculation is the same across classic ALE and C-SALE. (a) First, peak activation coordinates (foci) across a task or behavioral 

domain are collected. Data from the Working Memory subdomain is used as example here. (b) Coordinates are then convolved 

by a gaussian kernel with a full width half maximum inversely proportional to experimental sample size. The convolved foci 

maps are combined into modeled activation (MA) maps by taking their voxel-wise union. (c) Last, MA maps are combined 

into an ALE score map, again by taking the voxel-wise union across all (here 113) maps. Classic ALE and C-SALE start 

diverging due to different null hypotheses (d, g). We first discuss classic ALE (d-f). (d) Classic ALE relies on the assumption 

of spatially randomly distributed reported effects, as illustrated by a flat cerebellar sampling space. The ALE score map 
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calculated in (a-c) is tested against this null hypothesis to reveal behavioral activations that go beyond truly random spatial 

effects. The current implementation of ALE67 bypasses the (costly) need for permutation, by analytically combining 

experiment-wise ALE score histograms (thus: at the MA map-level (b)). This analytical strategy is outlined in (d). (e) 

Ultimately, this leads to one common histogram of ALE scores, against which each voxel’s ALE score (as determined in (a-

c)) is compared to obtain p-values. (f) A permutation-based strategy (cluster family-wise error; cFWE) is used to determine 

how observed cluster mass compares to cluster masses in 10,000 randomly generated maps. Clusters are considered significant 

if they exceed pcFWE < .05. Next, we discuss C-SALE (g, h, f). (g) In C-SALE, instead of assuming spatial homogeneity of 

reported effects, unequal spatial distributions are assumed. Specifically, a null probability distribution is created by convolving 

all brain-wide experiments in the BrainMap database and taking the voxel-wise sum of their probabilities. This probabilistic 

map is then normalized to one within the cerebellum, describing the base likelihood of finding foci at cerebellar voxels (g; 

left). To determine whether the observed voxel-wise ALE scores converge beyond this baseline, a permutation-based strategy 

is used. Specifically, 10,000 MA null maps are created by pseudorandomly sampling coordinates relative to the probability 

distribution. Each of these MA maps is biased by the baseline activation rates (g; right) and this is reflected in shifts in ALE 

score histograms across voxels (h) (three random voxels are illustrated here). (h) This means that when testing the ALE score 

map of a behavioral domain (a-c), each cerebellar voxel is tested against its unique distribution of ALE values. As illustrated 

by the green histogram, voxels that are reported more will require higher ALE scores to reach significant convergence (pvoxel 

< .001). (f) Lastly, to threshold cluster sizes, we opted for a lower limit of k = 50 voxels to prevent very small cerebellar 

regions reaching convergence. In the future, a (non-trivial) adaptation of cFWE for our probabilistic method may further 

improve cluster-wise inference. 

 

Classic ALE 

The classic implementation of ALE66,67 assesses convergence of reported effects (activation 

foci) against a null hypothesis that assumes foci are distributed equally across the cerebellar 

GM. For each analysis, we did the following: 1. Convolve activation foci (Figure 7a) by a 3D 

Gaussian kernel. Importantly, these kernels had a full-width half-maximum (FWHM) inversely 

related to sample size. This means narrower distributions – and thus higher statistical certainty  

– were assigned to experiments with large samples (and vice versa). 2. The convolved foci 

were then combined, first at the level of individual experiments. The union of all convolved 

foci within an experiment was taken, creating modeled activation (MA) maps (Figure 7b). 

These maps reflect voxel-wise maxima across convolved foci. 3. Next, experiments within a 

BD were combined. This was again done by taking their union, resulting in an ALE score map 

for each BD (Figure 7c). 4. These ALE score maps were then tested against the null assumption 

of random spatial associations (Figure 7d)66,67, resulting in voxel-wise p-values (Figure 7e). 

5. These p-values were thresholded at pvoxel < .001. Using a permutation method, 10,000 

random sets of experimental foci were created under the null hypothesis. For each of these 

coordinate sets, steps 1-5 were repeated. 6. Lastly, cluster-level family-wise error (cFWE) was 

used to test statistical significance of resulting clusters from step 5 while accounting for 

multiple comparisons67. Here, cluster extent (mass) of the actual experimental set in each 
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sub(domain) was compared against the distribution of cluster extents in the 10,000 random 

ALE score maps. Cluster extents were thresholded at pcFWE < .05 (Figure 7f). 

 

Accounting for the spatial bias of reported effects in probabilistic C-SALE 

However, as discussed above, there were spatial biases, with many more foci in superior 

regions. This rendered the standard null hypothesis unsuitable (Figures 1, 7). In C-SALE, we 

tested where reported effects converged in cerebellar subregions beyond the baseline, spatially 

biased, probability (Figures 1b, 7g). We outline our method for calculating voxel-wise baseline 

(null) probabilities in reported effects. Thereafter, we describe how we tested each 

(sub)domain’s ALE score map against this new null hypothesis. 

 

Creating a bias-accounting null model 

To calculate voxel-wise baseline probabilities within the cerebellum, we first created a whole-

brain probability map by taking all activation foci in the BrainMap database (its February 2024 

release) for healthy adult contrasts (8,408 unique experiments; 2,214 studies; 32,485 

participants; 69,703 coordinates). Then, each coordinate was convolved by a 3D Gaussian 

kernel with FWHM inversely proportional to experimental sample size. Next, convolved foci 

were summed voxel-wise to obtain a whole-brain probability map of reported effects. The 

resulting map was subsequently masked to the dilated cerebellar mask and normalized to a sum 

of one. This resulted in a voxel-wise baseline probability map of finding foci at any cerebellar 

voxel, regardless of task domain. Constructing a probabilistic, rather than deterministic97, null 

model has some advantages. By convolving foci by a FWHM based on experimental sample 

size (included in BrainMap88), the null model accounts for foci uncertainty. Connectedly, even 

regions without foci can be sampled into the null model at low probabilities, creating a 

continuous sampling space. By using the dilated cerebellar mask, the probabilistic null model 

may also partly account for influences of BOLD-signals from adjacent visual and temporal 

cerebral cortices. Unequal distributions of reported effects are ubiquitous across the brain 

(Supplementary Figure 2). Hence, by calculating the sum of convolved foci at the brain-level 

and then restricting this probability distribution to the cerebellum, the null model can be 

flexibly adapted to any volumetric ROI. Note that the null distribution is dataset-specific and 

needs to be adapted for different or updated datasets. 
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Creating meta-analytic maps with C-SALE  

Following this calculation of the baseline (null) probability map, we performed C-SALE for 

each (sub)domain as follows: 1. The ALE score maps were calculated in the same way as for 

the classic ALE approach (Figure 7a-c). 2. In contrast to classic ALE, here we constructed 

voxel-wise null distributions for each (sub)domain separately using Monte Carlo permutations 

(n = 10,000). Specifically, in each permutation, pseudorandom foci were sampled from the 

dilated cerebellar mask, weighted by the baseline probability map (Figure 7g). Next, a null 

ALE score map was calculated. 3. Each voxel’s observed ALE score was tested against its 

specific null distribution to calculate voxel-wise p-values (Figure 7h). 4. The resulting p-

values were thresholded at pvoxel < .001. Cluster extent was thresholded at k > 50 (Figure 7f). 

Note that adapting the preferred method for cluster-extent thresholding, cFWE, is not trivial 

due to the probabilistic nature of our method. Future work may improve cluster-extent 

thresholding for the C-SALE method.  

 

Comparing performance of C-SALE to classic ALE 

We assessed if C-SALE showed improvements in specificity of cerebellar clusters. The main 

aim of our study was to identify cerebellar subregions with above-chance convergence across 

behaviors, relative to the cerebellum. Thus, first, we could compare z-maps resulting from both 

methods and inspect cerebellar coverage across domains (Figure 7c, d). Secondly, we used 

spatial correlations across (sub)domains as a proxy for specificity. Whereas some spatial 

overlap is expected, extensive overlap implies the method was not able to differentiate 

(sub)domains (low specificity). For every pair of (sub)domains, we calculated spatial 

correlation (Pearson’s R) of unthresholded z-maps and assessed the distribution of correlation 

coefficients (Figure 7e, f; Supplementary Figure 3). We also compared spatial correlations 

of unthresholded z-maps for all pairs of subdomains (Supplementary Figure 4).  

 

Assessing stability of cerebellar C-SALE maps 

After establishing that C-SALE provided substantial improvements over classic ALE, we 

investigated C-SALE maps through a repeated subsampling strategy. (Sub)domains contained 

an inconsistent number of experiments, and convergence is more likely in larger analyses. 

Hence, we wanted to assess the stability of different (sub)domain’s C-SALE maps (see Figures 

1-3) considering sample size differences. 
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To give complementary perspectives on the (sub)domain maps we used two subsampling 

strategies: 1) with subsample sizes fixed at fifty experiments; and 2) with subsample sizes 

proportional to the (sub)domain (nsubsample = .2 * n(sub)domain). First, sampling fifty experiments 

per subsample examined the effect of using the same absolute number of experiments, since 

convergence is more common in larger datasets. However, here the proportion of experiments 

(from the total sample) is vastly different when examining rather intermediate (e.g., 

Interoception (n = 70) to large (n = 750) samples. Therefore, we also constructed maps at a 

fixed .2-proportion, providing an additional perspective on stability that facilitates fairer 

comparison across (sub)domains. These subsample analyses were run for five BDs and the 

seventeen subdomains with nexperiments ≥ 100. For each (sub)domain and subsampling strategy, 

we created fifty random sets of experiments from the total set of experiments, rerunning C-

SALE in each. We then calculated the distribution of spatial correlation coefficients (Pearson) 

across pairs of unthresholded subsampled z-maps within each (sub)domain. To understand how 

stability of unthresholded z-maps developed more comprehensively, we performed an 

additional set of subsampling analyses for BDs only. Here, we created subsamples at different 

absolute (n = 25, 50, 75, 100) and proportional (.2; .4; .6; and .8) sample sizes. Again, for each 

configuration, fifty random sets of experiments were selected. C-SALE was rerun in every set, 

after which we assessed the spatial correlation across the fifty resulting maps (for each 

combination of BD and sample size or proportion).  

To visualize stability of converging results specifically, we mapped, per (sub)domain, 

the proportions of subsamples that reached the threshold for significance (pvoxel < .001 and k = 

50) at each voxel to a common flatmap. This was done for each configuration described above. 

 

Correspondence with previous functional parcellations and mappings 

To relate findings to established functional cerebellar subdivisions, we calculated spatial 

correspondence of our C-SALE maps with several published cerebellar maps. Comparisons 

were made between unthresholded z-maps and continuous parcellations or mappings, and 

between unthresholded z-maps and dichotomous parcellations. For both strategies, heatmaps 

were hierarchically clustered. Asterisks denote significant spatial correspondence after 

accounting for SA and multiple comparisons (pvariogram, FDR = .05). 

 

For continuous comparisons, spatial correlations were calculated between every C-SALE map 

and target map. BD and subdomain z-maps were compared to the MDTB60 and probabilistic 

cerebellar lobular segmentation54,92,93,100. Specifically, for MDTB, we calculated spatial 
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correlation between unthresholded z-maps and the continuous group-level task activation 

maps. For the probabilistic lobular segmentation54, C-SALE maps were compared against 

every lobule separately. In both sets of comparisons, to account for SA, we calculated the actual 

spatial correlation between unthresholded C-SALE z-maps and each continuous target map 

parcel, and compared it against the null distribution obtained from correlations with 10,000 

SA-preserving surrogate maps (from C-SALE maps) created using BrainSmash134,135. SA is 

inherent in neuroimaging data, as close regions are generally more likely to have correlated 

activity134–136. It is important to account for these patterns when testing for significance, which 

may otherwise largely reflect spatial proximity. 

 

For dichotomous parcellations, heatmaps report average z-values for each C-SALE map within 

each (target) parcel, instead of correlations. We assessed correspondence with several atlases: 

1. The Nettekoven hierarchical cerebellar atlas (mid-granularity symmetrical atlas with sixteen 

parcels after merging left and right hemispheres)56; 2. the Buckner resting-state seven-network 

cerebellar atlas63; 3. the Cole-Anticevic cortical-subcortical atlas (ten cerebellar parcels)95; and 

lastly 4. the deterministic cerebellar lobular segmentation54,92,93,100. Specifically, for each 

parcellation, we calculated the average z-values of each (sub)domains unthresholded z-maps 

within each of the parcels. To assess statistical significance, we used a non-parametric test in 

which observed mean z-values within each parcel of the original C-SALE map were compared 

against a null distribution of average z-values in SA-preserving surrogate maps created using 

BrainSmash134,135. We reused the set of SA-preserving surrogate maps used in the continuous 

comparisons.  

 

Lastly, we calculated loading of each voxel within the thresholded C-SALE mask onto the 

primary (G1) and secondary (G2) functional cerebellar gradients94 using the LittleBrain 

Toolbox137. These gradients use orthogonal axes to explain variation in resting-state fMRI 

patterns. The first two axes, those explaining most variance, separate motor from DMN regions 

(low-to-high loading on G1) and task unfocused-to-focused regions (low-to-high on G2)94. 

Every voxel is colored by the seven-parcel Buckner resting-state network63 it colocalized with. 

Note that sign and unit of gradients are arbitrary. 

 

Meta-analytic connectivity mapping 

The functions of cerebellar subareas are tightly connected to those of connected brain 

regions18,24,39,41. Hence, we wanted to examine meta-analytic connectivity profiles across 
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(sub)domains. We adapted the SCALE method, itself an adaptation of MACM that accounts 

for baseline activations by sampling null coordinates from the dataset in question97. 

 

Our method tests activations per (sub)domain not against a deterministic null model, but a 

whole-brain probabilistic null model (see Accounting for […] probabilistic C-SALE). 

Specifically, for each (sub)domain, we used the thresholded (pvoxel < .001 and k = 50) C-SALE 

clusters as seed. We first restricted the set of experiments to those that reported at least one 

peak coordinate within each 3D seed mask. The set of coordinates included in these 

experiments were then used as input to whole-brain probabilistic SCALE analyses. These 

analyses aimed to reveal where in the brain coactivation with the seed regions occurred more 

than chance, given the biased baseline probability distribution across the brain. Importantly, 

the set and number of experiments was different from the C-SALE analysis: ultimately, we 

were able to run analyses for the Action BD and four subdomains (Nexperiments, seed ≥ 17). 

 

For our probabilistic implementation of SCALE, the method mirrored that described for C-

SALE. The only differences were the set of input experiments (limited to the C-SALE mask) 

and the ROI (the whole brain GM mask; >10 % GM probability at 2 mm resolution (Grey10)). 

Accordingly, for probabilistic SCALE, the null probability map was constructed by 

normalizing the sum of MA maps of all BrainMap experiments to one within the whole-brain 

GM mask (Grey10). Again, for each analysis, we created 10,000 null ALE maps by 

pseudorandomly sampling foci from the GM mask, weighted by the baseline reporting 

probability (Supplementary Figure 2). Subsequently, in each analysis, the observed ALE 

score was compared against the permutation-based null distribution to calculate voxel-wise p-

values. P-values were then thresholded at pvoxel < .001 and k = 50. This revealed where brain-

wide coactivations with each (sub)domain’s C-SALE cluster occurred more than chance given 

baseline activations across the brain.  

 

Correspondence of meta-analytic connectivity maps to subcortical-cerebral parcellations 

For every MACM result, we calculated spatial overlap with subcortical and cerebral cortical 

parcellations. This was done for subcortical regions98, cerebral cortical-subcortical networks95, 

and, to interpret findings in terms of brain cytoarchitecture, microstructural cortical types99,138. 

For all parcellations separately, we calculated proportions of thresholded MACM maps that 

colocalized with each parcel in MNI (2mm) space. These proportions are reported as 

hierarchically clustered heatmaps.  
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Data availability 

The BrainMap database is publicly accessible online, via the Sleuth filtered-search application 

(brainmap.org/software), via the BrainMap Community Portal (portal.brainmap.org), or by 

comprehensive download when authorized by a collaborative use agreement 

(brainmap.org/collaborations). For this study, we obtained the February 2024 data release and 

uploaded these data to GitHub (github.com/NevMagi/cerebellum_specific_ALE). Full 

intermediate data resulting from this publication are also uploaded there, including figure 

panels. Final figures were put together in Inkscape and can be obtained for reuse upon request.  

 

Code availability 
All programmatic code used to obtain the results in this article are made available on GitHub: 

(github.com/NevMagi/cerebellum_specific_ALE). All code necessary to perform bias-

accounting coordinated-based meta-analyses, for the whole brain or any volumetric brain 

region-of-interest, are made available. Also made available is our graphical processing unit 

implementation of NiMARE which helps speed up MA map calculation 

(github.com/amnsbr/nimare-gpu), and works for both classic ALE, and deterministic and 

probabilistic versions of C-SALE (as in the current study). 

 

Materials and Correspondence  

Correspondence can be addressed to Neville Magielse (n.magielse@fz-juelich.de) and Sofie L. 

Valk (s.valk@fz-juelich.de). Permanent address: Max Planck Institute for Human Cognitive 

and Brain Sciences, Dr. Sofie L. Valk, Stephanstraße 1A, 04103 Leipzig, Saxony, Germany. 

Telephone: +49 341 9940-2658 | Fax: +49 341 9940-104.  

 

Ethics statement 

This study uses data from the publicly available BrainMap meta-analytic database. Data 

consists of aggregated fMRI and PET data. Specifically, only peak coordinate locations and 

sample size were used (and available), and hence no individual participants could be identified. 

No contact was made (nor possible) with any participants, nor was any individual’s data 

handled at any point. 
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