001     1034024
005     20250203103414.0
037 _ _ |a FZJ-2024-06854
041 _ _ |a English
100 1 _ |a Streckel, Kevin
|0 P:(DE-Juel1)201873
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 99th DKG Annual Meeting CERAMICS 2024
|c Höhr-Grenzhausen
|d 2024-09-09 - 2024-09-11
|w Germany
245 _ _ |a Mixed ionic electronic oxygen transport membranematerials for solar-thermic syngas production
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1736237940_13392
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a The establishment of a technical carbon cycle to address climate change highlights the urgent need for renewable syngas production, driving investigation into solar-thermic carbon dioxide decomposition as a promising solution. This process, operating above 1000°C, yields carbon monoxide crucial for syngas generation, along with excess oxygen that requires removal. Oxygen transport membranes offer a potential solution. However, their viability hinges on the use of mixed ionic electronic conductors capable of withstanding extreme temperatures over prolonged periods. This presentation delves into the critical aspect of material selection for oxygen transport membranes, offering insights into current advancements and methodologies for evaluating feasibility.Specifically, we address challenges inherent in ceria/zirconia and calcium titanate-based materials, emphasizing their long-term thermal, mechanical, and chemical stability. These properties are intricately linked to ionic conductivity and non-stoichiometry, crucial factors determining the success of oxygen transport membrane technology. Through a thorough examination of these challenges, we aim to enhance our understanding of material requirements and contribute to the development of more resilient and efficient solutions for renewable syngas production.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
700 1 _ |a Baumann, Stefan
|0 P:(DE-Juel1)129587
|b 1
|u fzj
700 1 _ |a Neumann, Nicole
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Meulenberg, Wilhelm Albert
|0 P:(DE-Juel1)129637
|b 3
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)162228
|b 4
|u fzj
700 1 _ |a Nijmeijer, Arian
|0 P:(DE-HGF)0
|b 5
909 C O |o oai:juser.fz-juelich.de:1034024
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)201873
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129637
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162228
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-2-20101013
|k IMD-2
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IMD-2-20101013
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21