Home > Publications database > Vectorized Highly Parallel Density-Based Clustering for Applications With Noise > print |
001 | 1034038 | ||
005 | 20250203133229.0 | ||
024 | 7 | _ | |a 10.1109/ACCESS.2024.3507193 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2024-06868 |2 datacite_doi |
024 | 7 | _ | |a WOS:001375797900029 |2 WOS |
037 | _ | _ | |a FZJ-2024-06868 |
082 | _ | _ | |a 621.3 |
100 | 1 | _ | |a Xavier, Joseph Arnold |0 0009-0007-5215-6022 |b 0 |e Corresponding author |
245 | _ | _ | |a Vectorized Highly Parallel Density-Based Clustering for Applications With Noise |
260 | _ | _ | |a New York, NY |c 2024 |b IEEE |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1736409594_10770 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Clustering in data mining involves grouping similar objects into categories based on their characteristics. As the volume of data continues to grow and advancements in high-performance computing evolve, a critical need has emerged for algorithms that can efficiently process these computations and exploit the various levels of parallelism offered by modern supercomputing systems. Exploiting Single Instruction Multiple Data (SIMD) instructions enhances parallelism at the instruction level and minimizes data movement within the memory hierarchy. To fully harness a processor’s SIMD capabilities and achieve optimal performance, adapting algorithms for better compatibility with vector operations is necessary. In this paper, we introduce a vectorized implementation of the Density-based Clustering for Applications with Noise (DBSCAN) algorithm suitable for the execution on both shared and distributed memory systems. By leveraging SIMD, we enhance the performance of distance computations. Our proposed Vectorized HPDBSCAN (VHPDBSCAN) demonstrates a performance improvement of up to two times over the state-of-the-art parallel version, Highly Parallel DBSCAN (HPDBSCAN), on the ARM-based A64FX processor on two different datasets with varying dimensions. We have parallelized computations which are essential for the efficient workload distribution. This has significantly enhanced the performance on higher dimensional datasets. Additionally, we evaluate VHPDBSCAN’s energy consumption on the A64FX and Intel Xeon processors. The results show that in both processors, due to the reduced runtime, the total energy consumption of the application is reduced by 50% on the A64FX Central Processing Unit (CPU) and by approximately 19% on the Intel Xeon 8368 CPU compared to HPDBSCAN. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a 5122 - Future Computing & Big Data Systems (POF4-512) |0 G:(DE-HGF)POF4-5122 |c POF4-512 |f POF IV |x 1 |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 2 |
536 | _ | _ | |a EUPEX - EUROPEAN PILOT FOR EXASCALE (101033975) |0 G:(EU-Grant)101033975 |c 101033975 |f H2020-JTI-EuroHPC-2020-1 |x 3 |
536 | _ | _ | |a EUROCC-2 (DEA02266) |0 G:(DE-Juel-1)DEA02266 |c DEA02266 |x 4 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Pedro Gutiérrez Hermosillo Muriedas, Juan |0 0000-0001-8439-7145 |b 1 |
700 | 1 | _ | |a Nassyr, Stepan |0 P:(DE-Juel1)172888 |b 2 |u fzj |
700 | 1 | _ | |a Sedona, Rocco |0 P:(DE-Juel1)178695 |b 3 |
700 | 1 | _ | |a Götz, Markus |0 P:(DE-Juel1)162390 |b 4 |
700 | 1 | _ | |a Streit, Achim |0 0000-0002-5065-469X |b 5 |
700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 6 |
700 | 1 | _ | |a Cavallaro, Gabriele |0 P:(DE-Juel1)171343 |b 7 |
773 | _ | _ | |a 10.1109/ACCESS.2024.3507193 |g Vol. 12, p. 181679 - 181692 |0 PERI:(DE-600)2687964-5 |p 181679 - 181692 |t IEEE access |v 12 |y 2024 |x 2169-3536 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1034038/files/Vectorized_Highly_Parallel_Density-Based_Clustering_for_Applications_With_Noise.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1034038 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)172888 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)178695 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)132239 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)171343 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-512 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Supercomputing & Big Data Infrastructures |9 G:(DE-HGF)POF4-5122 |x 1 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 2 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2023-10-26 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-26 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE ACCESS : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-04-03T10:39:05Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-04-03T10:39:05Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-04-03T10:39:05Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-01-02 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|