001034040 001__ 1034040
001034040 005__ 20241219210858.0
001034040 0247_ $$2doi$$a10.1101/2024.06.25.24309376
001034040 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06870
001034040 037__ $$aFZJ-2024-06870
001034040 1001_ $$0P:(DE-HGF)0$$aPrimus, Sabrina A.$$b0
001034040 245__ $$aBeyond Volume: Unraveling the Genetics of Human Brain Geometry
001034040 260__ $$c2024
001034040 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1734618612_15343
001034040 3367_ $$2ORCID$$aWORKING_PAPER
001034040 3367_ $$028$$2EndNote$$aElectronic Article
001034040 3367_ $$2DRIVER$$apreprint
001034040 3367_ $$2BibTeX$$aARTICLE
001034040 3367_ $$2DataCite$$aOutput Types/Working Paper
001034040 500__ $$aThis study was funded by Helmholtz Imaging grants (NimRLS, ZT-I-PF-4-010 and BrainShapes, ZT-I-PF-4-062).
001034040 520__ $$aBrain geometry impacts brain function. A quantitative encoding of form is provided by the Laplace-Beltrami operator’s spectrum of eigenvalues (LBS). We examined LBS genetics of 22 subcortical brain structures including cerebellum in 19,862 healthy White-British UK Biobank participants by multivariate GWAS (MOSTest) on the first 49 eigenvalues each. Controlling for surface and volume, we identified 80 unique variants (p<1/22*5E-8) influencing the shapes of one or several structures, with the highest yield (37 variants) for brain stem. The previously known influence of several of these loci on basic morphology, such as volume, is thus shown to also influence complex shape. Known associations of observed loci with blood pressure, neurodegeneration, alcohol consumption, and mental disorders hint at preclinical stages of these conditions potentially mediating the genetic effect on brain morphology. Significant correlations between LBS of several brain structures and the polygenic risks of hypertension, ischemic stroke and schizophrenia evince brain shapes as early biomarkers.
001034040 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001034040 588__ $$aDataset connected to CrossRef
001034040 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b1
001034040 7001_ $$0P:(DE-Juel1)185083$$aRaimondo, Federico$$b2$$eCorresponding author
001034040 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b3
001034040 7001_ $$0P:(DE-HGF)0$$aWinkelmann, Juliane$$b4
001034040 7001_ $$0P:(DE-HGF)0$$aOexle, Konrad$$b5
001034040 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b6
001034040 773__ $$a10.1101/2024.06.25.24309376
001034040 8564_ $$uhttps://juser.fz-juelich.de/record/1034040/files/Unbenannte%20Anlage%2000010.pdf$$yOpenAccess
001034040 909CO $$ooai:juser.fz-juelich.de:1034040$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001034040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b1$$kFZJ
001034040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185083$$aForschungszentrum Jülich$$b2$$kFZJ
001034040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b3$$kFZJ
001034040 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b3
001034040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b6$$kFZJ
001034040 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001034040 9141_ $$y2024
001034040 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034040 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001034040 980__ $$apreprint
001034040 980__ $$aVDB
001034040 980__ $$aUNRESTRICTED
001034040 980__ $$aI:(DE-Juel1)INM-7-20090406
001034040 9801_ $$aFullTexts