001034042 001__ 1034042
001034042 005__ 20250203133229.0
001034042 0247_ $$2doi$$a10.1029/2024JD041294
001034042 0247_ $$2ISSN$$a0148-0227
001034042 0247_ $$2ISSN$$a2156-2202
001034042 0247_ $$2ISSN$$a2169-897X
001034042 0247_ $$2ISSN$$a2169-8996
001034042 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06872
001034042 0247_ $$2WOS$$aWOS:001371040400001
001034042 037__ $$aFZJ-2024-06872
001034042 041__ $$aEnglish
001034042 082__ $$a550
001034042 1001_ $$00000-0001-6499-4620$$aNoble, Phoebe E.$$b0$$eCorresponding author
001034042 245__ $$aExploring Sources of Gravity Waves in the Southern Winter Stratosphere Using 3‐D Satellite Observations and Backward Ray‐Tracing
001034042 260__ $$aHoboken, NJ$$bWiley$$c2024
001034042 3367_ $$2DRIVER$$aarticle
001034042 3367_ $$2DataCite$$aOutput Types/Journal article
001034042 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734617988_15343
001034042 3367_ $$2BibTeX$$aARTICLE
001034042 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001034042 3367_ $$00$$2EndNote$$aJournal Article
001034042 520__ $$aDuring austral winter, the southern high latitudes has some of the most intense stratospheric gravity wave (GW) activity globally. However, producing accurate representations of GW dynamics in this region in numerical models has proved exceptionally challenging. One reason for this is that questions remain regarding the relative contributions of orographic and non-orographic sources of GWs here. We use three-dimensional (3-D) satellite GW observations from the Atmospheric Infrared Sounder in austral winter 2012 in combination with the Gravity-wave Regional Or Global Ray Tracer to backward trace GW rays to their sources. We trace over 14.2 million rays, through ERA5 reanalysis background atmosphere, to their lower atmospheric sources. We find that GWs observed thousands of km downstream can be traced back to key orographic regions, and that on average, all waves (orographic and non-orographic) converge meridionally over the Southern Ocean. We estimate that across this winter, orographic sources contribute around 5%–35% to the total momentum flux (MF) observed near 60S. The remaining proportion consists of waves from non-orographic sources, which although typically carry lower MF, the large spatial extent of non-orographic sources leads to a higher overall contribution. We also quantify the proportion of MF traced back to different regions across the whole southern high latitudes area in order to measure the relative importance of these different regions. These results provide the important insights needed to advance our knowledge of the atmospheric momentum budget in the southern high latitudes.
001034042 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001034042 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x1
001034042 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001034042 7001_ $$0P:(DE-Juel1)180866$$aRhode, Sebastian$$b1
001034042 7001_ $$00000-0003-4377-2038$$aHindley, Neil P.$$b2
001034042 7001_ $$0P:(DE-HGF)0$$aBerthelemy, Peter$$b3
001034042 7001_ $$00000-0002-9670-6715$$aMoffat-Griffin, Tracy$$b4
001034042 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b5
001034042 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b6
001034042 7001_ $$00000-0003-2496-953X$$aWright, Corwin J.$$b7
001034042 773__ $$0PERI:(DE-600)2969341-X$$a10.1029/2024JD041294$$gVol. 129, no. 23, p. e2024JD041294$$n23$$pe2024JD041294$$tJGR / Atmospheres$$v129$$x0148-0227$$y2024
001034042 8564_ $$uhttps://juser.fz-juelich.de/record/1034042/files/JGR%20Atmospheres%20-%202024%20-%20Noble%20-%20Exploring%20Sources%20of%20Gravity%20Waves%20in%20the%20Southern%20Winter%20Stratosphere%20Using%203%E2%80%90D%20Satellite.pdf$$yOpenAccess
001034042 909CO $$ooai:juser.fz-juelich.de:1034042$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001034042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180866$$aForschungszentrum Jülich$$b1$$kFZJ
001034042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b5$$kFZJ
001034042 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b6$$kFZJ
001034042 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001034042 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x1
001034042 9141_ $$y2024
001034042 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
001034042 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001034042 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-26$$wger
001034042 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
001034042 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001034042 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-31
001034042 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-31
001034042 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES-ATMOS : 2022$$d2024-12-31
001034042 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-31
001034042 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-31
001034042 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-31
001034042 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-31
001034042 920__ $$lyes
001034042 9201_ $$0I:(DE-Juel1)ICE-4-20101013$$kICE-4$$lStratosphäre$$x0
001034042 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
001034042 980__ $$ajournal
001034042 980__ $$aVDB
001034042 980__ $$aUNRESTRICTED
001034042 980__ $$aI:(DE-Juel1)ICE-4-20101013
001034042 980__ $$aI:(DE-Juel1)JSC-20090406
001034042 9801_ $$aFullTexts