Hauptseite > Publikationsdatenbank > Exploring Sources of Gravity Waves in the Southern Winter Stratosphere Using 3‐D Satellite Observations and Backward Ray‐Tracing > print |
001 | 1034042 | ||
005 | 20250203133229.0 | ||
024 | 7 | _ | |a 10.1029/2024JD041294 |2 doi |
024 | 7 | _ | |a 0148-0227 |2 ISSN |
024 | 7 | _ | |a 2156-2202 |2 ISSN |
024 | 7 | _ | |a 2169-897X |2 ISSN |
024 | 7 | _ | |a 2169-8996 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-06872 |2 datacite_doi |
024 | 7 | _ | |a WOS:001371040400001 |2 WOS |
037 | _ | _ | |a FZJ-2024-06872 |
041 | _ | _ | |a English |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Noble, Phoebe E. |0 0000-0001-6499-4620 |b 0 |e Corresponding author |
245 | _ | _ | |a Exploring Sources of Gravity Waves in the Southern Winter Stratosphere Using 3‐D Satellite Observations and Backward Ray‐Tracing |
260 | _ | _ | |a Hoboken, NJ |c 2024 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1734617988_15343 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a During austral winter, the southern high latitudes has some of the most intense stratospheric gravity wave (GW) activity globally. However, producing accurate representations of GW dynamics in this region in numerical models has proved exceptionally challenging. One reason for this is that questions remain regarding the relative contributions of orographic and non-orographic sources of GWs here. We use three-dimensional (3-D) satellite GW observations from the Atmospheric Infrared Sounder in austral winter 2012 in combination with the Gravity-wave Regional Or Global Ray Tracer to backward trace GW rays to their sources. We trace over 14.2 million rays, through ERA5 reanalysis background atmosphere, to their lower atmospheric sources. We find that GWs observed thousands of km downstream can be traced back to key orographic regions, and that on average, all waves (orographic and non-orographic) converge meridionally over the Southern Ocean. We estimate that across this winter, orographic sources contribute around 5%–35% to the total momentum flux (MF) observed near 60S. The remaining proportion consists of waves from non-orographic sources, which although typically carry lower MF, the large spatial extent of non-orographic sources leads to a higher overall contribution. We also quantify the proportion of MF traced back to different regions across the whole southern high latitudes area in order to measure the relative importance of these different regions. These results provide the important insights needed to advance our knowledge of the atmospheric momentum budget in the southern high latitudes. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a 2112 - Climate Feedbacks (POF4-211) |0 G:(DE-HGF)POF4-2112 |c POF4-211 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Rhode, Sebastian |0 P:(DE-Juel1)180866 |b 1 |
700 | 1 | _ | |a Hindley, Neil P. |0 0000-0003-4377-2038 |b 2 |
700 | 1 | _ | |a Berthelemy, Peter |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Moffat-Griffin, Tracy |0 0000-0002-9670-6715 |b 4 |
700 | 1 | _ | |a Preusse, Peter |0 P:(DE-Juel1)129143 |b 5 |
700 | 1 | _ | |a Hoffmann, Lars |0 P:(DE-Juel1)129125 |b 6 |
700 | 1 | _ | |a Wright, Corwin J. |0 0000-0003-2496-953X |b 7 |
773 | _ | _ | |a 10.1029/2024JD041294 |g Vol. 129, no. 23, p. e2024JD041294 |0 PERI:(DE-600)2969341-X |n 23 |p e2024JD041294 |t JGR / Atmospheres |v 129 |y 2024 |x 0148-0227 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1034042/files/JGR%20Atmospheres%20-%202024%20-%20Noble%20-%20Exploring%20Sources%20of%20Gravity%20Waves%20in%20the%20Southern%20Winter%20Stratosphere%20Using%203%E2%80%90D%20Satellite.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1034042 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)180866 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)129143 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)129125 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-211 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Die Atmosphäre im globalen Wandel |9 G:(DE-HGF)POF4-2112 |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-26 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-08-26 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-31 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J GEOPHYS RES-ATMOS : 2022 |d 2024-12-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-31 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-31 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-31 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICE-4-20101013 |k ICE-4 |l Stratosphäre |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ICE-4-20101013 |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|