001     1034042
005     20250203133229.0
024 7 _ |a 10.1029/2024JD041294
|2 doi
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2169-897X
|2 ISSN
024 7 _ |a 2169-8996
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-06872
|2 datacite_doi
024 7 _ |a WOS:001371040400001
|2 WOS
037 _ _ |a FZJ-2024-06872
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Noble, Phoebe E.
|0 0000-0001-6499-4620
|b 0
|e Corresponding author
245 _ _ |a Exploring Sources of Gravity Waves in the Southern Winter Stratosphere Using 3‐D Satellite Observations and Backward Ray‐Tracing
260 _ _ |a Hoboken, NJ
|c 2024
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734617988_15343
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a During austral winter, the southern high latitudes has some of the most intense stratospheric gravity wave (GW) activity globally. However, producing accurate representations of GW dynamics in this region in numerical models has proved exceptionally challenging. One reason for this is that questions remain regarding the relative contributions of orographic and non-orographic sources of GWs here. We use three-dimensional (3-D) satellite GW observations from the Atmospheric Infrared Sounder in austral winter 2012 in combination with the Gravity-wave Regional Or Global Ray Tracer to backward trace GW rays to their sources. We trace over 14.2 million rays, through ERA5 reanalysis background atmosphere, to their lower atmospheric sources. We find that GWs observed thousands of km downstream can be traced back to key orographic regions, and that on average, all waves (orographic and non-orographic) converge meridionally over the Southern Ocean. We estimate that across this winter, orographic sources contribute around 5%–35% to the total momentum flux (MF) observed near 60S. The remaining proportion consists of waves from non-orographic sources, which although typically carry lower MF, the large spatial extent of non-orographic sources leads to a higher overall contribution. We also quantify the proportion of MF traced back to different regions across the whole southern high latitudes area in order to measure the relative importance of these different regions. These results provide the important insights needed to advance our knowledge of the atmospheric momentum budget in the southern high latitudes.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 2112 - Climate Feedbacks (POF4-211)
|0 G:(DE-HGF)POF4-2112
|c POF4-211
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rhode, Sebastian
|0 P:(DE-Juel1)180866
|b 1
700 1 _ |a Hindley, Neil P.
|0 0000-0003-4377-2038
|b 2
700 1 _ |a Berthelemy, Peter
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Moffat-Griffin, Tracy
|0 0000-0002-9670-6715
|b 4
700 1 _ |a Preusse, Peter
|0 P:(DE-Juel1)129143
|b 5
700 1 _ |a Hoffmann, Lars
|0 P:(DE-Juel1)129125
|b 6
700 1 _ |a Wright, Corwin J.
|0 0000-0003-2496-953X
|b 7
773 _ _ |a 10.1029/2024JD041294
|g Vol. 129, no. 23, p. e2024JD041294
|0 PERI:(DE-600)2969341-X
|n 23
|p e2024JD041294
|t JGR / Atmospheres
|v 129
|y 2024
|x 0148-0227
856 4 _ |u https://juser.fz-juelich.de/record/1034042/files/JGR%20Atmospheres%20-%202024%20-%20Noble%20-%20Exploring%20Sources%20of%20Gravity%20Waves%20in%20the%20Southern%20Winter%20Stratosphere%20Using%203%E2%80%90D%20Satellite.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1034042
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180866
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129143
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129125
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2112
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-26
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J GEOPHYS RES-ATMOS : 2022
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-31
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-31
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICE-4-20101013
|k ICE-4
|l Stratosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICE-4-20101013
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21