001034058 001__ 1034058 001034058 005__ 20250314084122.0 001034058 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-06879 001034058 037__ $$aFZJ-2024-06879 001034058 041__ $$aEnglish 001034058 1001_ $$0P:(DE-Juel1)132112$$aGeimer, Markus$$b0$$eCorresponding author$$ufzj 001034058 1112_ $$a3rd natESM Training Workshop$$cJülich$$d2024-11-05 - 2024-11-06$$wGermany 001034058 245__ $$aParallel Performance Analysis$$f2024-11-05 - 001034058 260__ $$c2024 001034058 3367_ $$033$$2EndNote$$aConference Paper 001034058 3367_ $$2DataCite$$aOther 001034058 3367_ $$2BibTeX$$aINPROCEEDINGS 001034058 3367_ $$2ORCID$$aLECTURE_SPEECH 001034058 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1736409940_10770$$xOther 001034058 3367_ $$2DINI$$aOther 001034058 500__ $$aTutorial slides 001034058 520__ $$aTo effectively harness the computing capabilities of todays and future supercomputing systems, performance analysis and optimization should be a regular activity during scientific software development. Instead of using do-it-yourself solutions usually based on coarse-grained timers (e.g., time per timestep or solver iteration), developers of scientific code bases can resort to a variety of spezialized tools that have been specifically developed to assist them with this task. In this tutorial, we will introduce the open-source tools Score-P and Cube, and explore their usage and capabilities with a number of hands-on exercises. 001034058 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001034058 536__ $$0G:(DE-Juel-1)ATMLPP$$aATMLPP - ATML Parallel Performance (ATMLPP)$$cATMLPP$$x1 001034058 8564_ $$uhttps://juser.fz-juelich.de/record/1034058/files/00_PerformanceEngineering.pdf$$yOpenAccess 001034058 8564_ $$uhttps://juser.fz-juelich.de/record/1034058/files/01_ReferenceRun.pdf$$yOpenAccess 001034058 8564_ $$uhttps://juser.fz-juelich.de/record/1034058/files/02_Score-P_basic.pdf$$yOpenAccess 001034058 8564_ $$uhttps://juser.fz-juelich.de/record/1034058/files/03_Cube.pdf$$yOpenAccess 001034058 8564_ $$uhttps://juser.fz-juelich.de/record/1034058/files/04_Score-P_advanced.pdf$$yOpenAccess 001034058 8564_ $$uhttps://juser.fz-juelich.de/record/1034058/files/05_ICON_CaseStudy.pdf$$yOpenAccess 001034058 909CO $$ooai:juser.fz-juelich.de:1034058$$pdriver$$pVDB$$popen_access$$popenaire 001034058 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132112$$aForschungszentrum Jülich$$b0$$kFZJ 001034058 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001034058 9141_ $$y2024 001034058 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001034058 920__ $$lyes 001034058 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 001034058 980__ $$atalk 001034058 980__ $$aVDB 001034058 980__ $$aUNRESTRICTED 001034058 980__ $$aI:(DE-Juel1)JSC-20090406 001034058 9801_ $$aFullTexts