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WHAT IS A LANGUAGE MODEL?

Currently, huge efforts are directed to training large language models!

Sequence of words w1,w2, . . . ,∈ V (Vocabulary )
A languange model approximates a probability distribution

P(wt |w1:(t−1))

“How likely is a specific word to follow a given sequence of words?”
→ Can be used to generate new texts.
→ Probabilty of entire sentence:

P(w1:n) =
n∏

i=1

P(wi |w1:i−1)
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DEEP LEARNING

Goal: Learn input-output relations from data
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Source: Izaak Neutelings https://tikz.net/neural_networks/

→ Forward propagation: Compute activations a(j)
i and loss

← Backward propagation: Update weights to minimize loss (gradient
descent)
Repeat until convergence
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DEEP LEARNING ARCHITECTURES
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Fully connected neural network, also called feed-forward layer (FFL)
or multi-level-perceptron (MLP)
+ Matrix multiplications in forward & backward propagation

→ well-suited for HPC
− No fit for sequential nature of language

Specialized architectures are needed!
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HOW NEW ARCHITECTURES EMERGE

Somebody has "an
intuition"

It turns out to 

work well

Widespread 

adoption

Further research 
on how it works

Discomfort for mathematicians
Relationship intuition↔ reality: questionable
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THE TRANSFORMER ARCHITECTURE
The T in GPT

The transformer architecture
was introduced in 2017.
The main innovation is the
attention mechanism

SelfAttention(Q,K ,V ) = softmax
(

QK T
√

d

)
V .

Softmax applied on rows,
including masking.
Q, K , V contain learned
representations of input
tokens. Attention is all you need, A. Vaswani, N. Shazeer, N. Parmar,

J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin,
2017
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THE TRANSFORMER ARCHITECTURE
The T in GPT

A transformer neural network
stacks a number of
transformer layers, each
containing an attention block
and a feed forward layer.
Remarkable abilities are
shown by large models with
many parameters.
GPT-4: 1.76 trillion parameters
(estimated)

Attention is all you need, A. Vaswani, N. Shazeer, N. Parmar,
J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin,

2017
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TRAINING LARGE MODELS

Training these large models needs
Lots of computational resources (GPUs!),
Lots of data.

Pretraining happens on
supercomputers.

(R-U. Limbach / Forschungszentrum Jülich)

Finetuning of smaller models
happens on workstations.

NVIDIA

In both settings, you want to use limited resources efficiently.
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GPU MEMORY REQUIREMENTS DURING
TRAINING

Using the mixed-precision Adam optimizer.

12.5%

12.5%
25%

25% 25%

Parameters (BF16)
Gradients (BF16)
Momentum (F32)
Variance (FP32)
Parameters (FP32)

+ Activations, depending on sequence length and batch size.
Activations can be reduced using activation checkpointing.

Member of the Helmholtz Association September 11, 2024 Slide 10



OBSERVING LOW RANK

Figure: Singular value decay of gradient for specific layer in pre-training 60M
Llama model after various iterations.
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LORA: LOW-RANK ADAPTATION OF LARGE
LANGUAGE MODELS

The weight updates of each layer
are accumulated in two low-rank
matrices.
Mulitple LoRA adapters possible
for multiple fine-tuned models
from one base model.
r is chosen a priori (as a
hyperparameter).
Not suited for pre-training.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S.
Wang, L. Wang, and W. Chen. “LoRA: Low-Rank
Adaptation of Large Language Models”, 2021.
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GALORE: MEMORY-EFFICIENT LLM TRAINING BY GRADIENT LOW-RANK PROJECTION

J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, Y.
Tian. “GaLore: Memory-Efficient LLM Training by Gradient
Low-Rank Projection”, 2024.

Compute projection subspace
every couple of iterations

Compute full-rank gradient,
then project it

Update optimizer states
(Momentum, Variance) with
projected gradient.

→ Mt ,Vt ∈ Rm×ℓ, ℓ≪ n

Lower memory footprint than
LoRA.

Better suited for pre-training.
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GALORE: MEMORY-EFFICIENT LLM TRAINING BY GRADIENT LOW-RANK PROJECTION

J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, Y.
Tian. “GaLore: Memory-Efficient LLM Training by Gradient
Low-Rank Projection”, 2024.

Computing the whole SVD is
horribly inefficient, when all you
want is an approximate basis of
range(Gt).
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THE RANDOMIZED RANGE FINDER
The right tool for the job

N. Halko, P.-G. Martinsson, J. A. Tropp. “Finding structure with randomness: Probabilistic algorithms for constructing approximate
matrix decompositions”, 2010.

For an oversampling parameter p ∈ N, 0 ≤ p ≤ r , we have

∥A−QQT A∥2 ≤
(

1 + 11
√

r ·
√
min{m,n}

)
σr−p+1 (1)

with a probability of at least 1− 6 · p−p under mild assumptions on p.
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THE RANDOMIZED RANGE FINDER
The right tool for the job

N. Halko, P.-G. Martinsson, J. A. Tropp. “Finding structure with randomness: Probabilistic algorithms for constructing approximate
matrix decompositions”, 2010.

Plug this in and get a speedup of 10x and more compared to full SVD
composition, with similar loss curve.
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THE ADAPTIVE RANDOMIZED RANGE
FINDER

In later iterations,
lower rank suffices
for same
approximation
quality.

Idea: Fix tolerance
for subspace
approximation
instead of rank and
use adaptive
randomized
rangefinder.

Variant of classical
Gram-Schmidt
orthogonalization.

N.
Halko, P.-G. Martinsson, J. A. Tropp. “Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions”, 2010.
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A BLOCKED ADAPTIVE RANDOMIZED
RANGE FINDER

A blocked algorithm is required to effiently exploit the memory
hierarchy of modern hardware, including GPUs.

A

 | | |
Ω1 Ω2 . . . Ωnb

| | |

 =

 | | |
Q1 Q2 · · · Qnb

| | |



– B1 –
– B2 –

...
– Bnb –


1 Compute Q1: AΩ1 = Q1R1, B1 = QT

1 A
2 Compute Q2: (I −Q1QT

1 )AΩ2 = Q2R2, B2 = QT
2 A

3 Compute Q3: (I−
[
Q1 Q2

] [
Q1 Q2

]T
)AΩ3 = Q3R3, R2 = QT

3 A
4 ...
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A BLOCKED ADAPTIVE RANDOMIZED
RANGE FINDER

P.-G. Martinsson, S. Voronin. “A randomized blocked algorithm for efficiently computing rank-revealing factorizations of matrices”,
2015.

Orthogonalizations are accumulated in A, which approaches zero
and becomes a non-probabilistic error indicator.

→ not ideal in memory-constrained environment.
Reorthogonalization (line 3’) may be necessary in floating point
arithmetic to ensure orthogonality of Q.
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A HOUSEHOLDER BLOCKED ADAPTIVE
RANDOMIZED RANGE FINDER

Idea: Adaptively compute Householder-QR decomposition of
A
[
Ω0 . . . Ωk

]
in factored form (geqrt3-style).

V (lower triangular): contains Householder vectors representing Q, s.t.
QR = A

[
Ω1 . . . Ωk

]
A: Used to store B.
T : Contains triangular blocks of storage-efficent QR decomposition of
block reflectors

V =

 |

| |

V1

V5 · · · Vk

|

| |

 , B =


– B1 –

– B2 –
...

– Bk –

 ,

T =
[
T1

T2 · · · Tk

]
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A HOUSEHOLDER BLOCKED ADAPTIVE
RANDOMIZED RANGE FINDER

Stopping criterion: Use scalar error based on Frobenius norm from
W. Yu, Y. Gu, Y. Li. “Efficient Randomized Algorithms for the Fixed-Precision Low-Rank Matrix Approximation”, 2018.

Algorithm 1: Householder block adaptive randomized range finder
Require: A matrix A ∈ Rm×n, a tolerance σ, and a block size b.

1: E ← ∥A∥F
2: B ← A
3: i ← 1
4: while E > σ do
5: Fill Ω ∈ Rn×b with values from a standard Gaussian distribution.
6: Vi:,i ,Ti ← qr(Ai:,:Ω) {Storage-efficient QR decomposition,

geqrt}
7: Bi:,: ← (I − ViTiV T

i )Bi:,:
8: E ← E − ∥Bi,:∥F
9: i ← i + 1

10: end while
11: r = i − 1
12: V ← V:,0:r
13: B ← B0:r ,:
Ensure: V ∈ Rm×rb Householder vectors, B ∈ Rrb×n,

T0, . . . ,Ti ∈ Rb×b such that A−QB < σ, where
Q =

∏r
i=0(I − ViTiV T

i )

Member of the Helmholtz Association September 11, 2024 Slide 19



HOUSEHOLDER VS. GRAM-SCHMIDT

Stability
Modified Gram Schmidt:

QT Q = I + EMGS, ∥EMGS∥2 ≈ uκ2(A)
Householder QR:

QT Q = I + EH , ∥EH∥2 ≈ u
We observed in our application, κ2(A) will become very large.

Operation count
In factored form (Householder) and without reorthogonalization
(Gram-Schmidt) both take around 2mn2 operations.

Practical issues
GPU-based, optimized version for Householder-QR are available
(MAGMA library) and can be adapted for the rangefinder
algorithm.
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OVERLAP COMMUNICATION,
COMPUTATION AND RANDOM GENERATION

Queue 1 Queue 2 Queue 3
Create Ω1

V1 ← AΩ1 Create Ω2
V1,T1 ← qr(V1) V2 ← AΩ2

V2 ← (I − V1T1V T
1 )V2 A← (I − V1T1V T

1 )A Create Ω3
V2,T2 ← qr(V2) V3 ← AΩ3

V3 ← (I − V2T2V T
2 )V3 A← (I − V2T2V T

2 )A Create Ω4
V3,T3 ← qr(V3) V4 ← AΩ4

...
...

...

More operations (explicit panel update) in favor of exposed
parallelism.
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FURTHER RESEARCH

Experiments and results.
Relative vs. absolute stopping criterion.
How do stability results translate to randomized setting.
Two-sided projections
Mix Gram-Schmidt and QR
Cholesky QR
Other decompositions from Randomized Numerical Linear Algebra
Extend to higher dimensional tensors.
Formalize relationship between LoRA and Galore
How to find a good rank for LoRA?
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MORE INTERESTING RESEARCH
OPPORTUNITIES

Thank you for your attention!
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