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WHAT IS A LANGUAGE MODEL?

|
Currently, huge efforts are directed to training large language models!

= Sequence of words wy, we, ..., € V (Vocabulary)
= A languange model approximates a probability distribution

P(wi|wy.(t-1))

“How likely is a specific word to follow a given sequence of words?”
— Can be used to generate new texts.
— Probabilty of entire sentence:
n

P(wi.n) = [ [ P(wilwa.i 1)
i=1
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DEEP LEARNING

Goal: Learn input-output relations from data

hidden layers

Source: Izaak Neutelings https://tikz.net/neural_networks/

— Forward propagation: Compute activations a,(/) and loss
< Backward propagation: Update weights to minimize loss (gradient
descent)
= Repeat until convergence
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DEEP LEARNING ARCHITECTURES

hidden layers

Fully connected neural network, also called feed-forward layer (FFL)
or multi-level-perceptron (MLP)
+ Matrix multiplications in forward & backward propagation
— well-suited for HPC
— No fit for sequential nature of language
|

Specialized architectures are needed!
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HOW NEW ARCHITECTURES EMERGE

Somebody has "an It turns out to
intuition" ﬂ> work well

Further research Widespread
on how it works adoption
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HOW NEW ARCHITECTURES EMERGE

Somebody has "an
intuition" ﬁ>
<« Widespread
adoption

Relationship intuition <« reality: questionable

It turns out to
work well

Further research
on how it works

Discomfort for mathematicians
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THE TRANSFORMER ARCHITECTURE

The T in GPT

= The transformer architecture
was introduced in 2017.

= The main innovation is the

attention mechanism

SelfAttention(Q, K, V) = softmax (QKT) V.

Vd

= Softmax applied on rows,

including masking.

= Q, K, V contain learned
representations of input

tokens.
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THE TRANSFORMER ARCHITECTURE

The T in GPT

Output
Probabilities

= A transformer neural network i
stacks a number of =1

transformer layers, each
containing an attention block ER (|
and a feed forward layer. ’#ﬂ&.ﬁ«

= Remarkable abilities are el | |
shown by large models with postions - =
many parameters. Eroodne gt £ Encodrg

= GPT-4: 1.76 trillion parameters |—|—| |—|—]
(estimated) L e

Attention is all you need, A. Vaswani, N. Shazeer, N. Parmar,
J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, |. Polosukhin,
2017
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TRAINING LARGE MODELS

Training these large models needs
= Lots of computational resources (GPUs!),
= |ots of data.

Pretraining happens on Finetuning of smaller models
supercomputers. happens on workstations.

(R-U. Limbach / Forschungszentrum Jiilich) NVIDIA

In both settings, you want to use limited resources efficiently.
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GPU MEMORY REQUIREMENTS DURING
TRAINING

Using the mixed-precision Adam optimizer.

12.5% O Parameters (BF16)
25% 12 59, O Gradients (BF16)
; 0 Momentum (F32)
O Variance (FP32)
259, 259 O Parameters (FP32)

+ Activations, depending on sequence length and batch size.
= Activations can be reduced using activation checkpointing.
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Figure: Singular value decay of gradient for specific layer in pre-training 60M
Llama model after various iterations.
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LORA: LOW-RANK ADAPTATION OF LARGE
LANGUAGE MODELS

= The weight updates of each layer

are accumulated in two low-rank Pretrained
matrices. Weights
= Mulitple LoRA adapters possible W e R™?
for multiple fine-tuned models N
from one base model. e
= ris chosen a priori (as a Figure 1: Our reparametriza-
hyperparameter). tion. We only train A and B.

" NOt Su'ted for pre_tralnlng' E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S.

Wang, L. Wang, and W. Chen. “LoRA: Low-Rank
Adaptation of Large Language Models”, 2021.
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GALORE: MEMORY-EFFICIENT LLM TRAINING BY GRADIENT LOW-RANK PROJECTION

J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, Y.

Algorithm 2: Adam with GaLore Tian. “GaLore: Memory-Efficient LLM Training by Gradient

Input: A layer weight matrix W € R™*"™ with m < n. Step size 7, Low-Rank Projection”, 2024.
scale factor o, decay rates 31, B2, rank 7, subspace change frequency
Initialize first-order moment Mo € R"™" < 0 m Compute projection subspace
il second orermoment Vo € 7 0 every couple of iterations
repeat
"g; ERMXT Vi (W) m Compute full-rank gradient,
: y’; ?—VUT :SX pley {Initialize left projector as m < n} then project it
::P;r P {Reuse the previous projector} = Update optimizer states
Re < B Gy {Project gradient into compact space} (Momentum, Variance) with
UPDATE(FR;) by Adam projected gradient.

gl\‘ *—dﬁl "j\'[f,—l 4(' (1 ;d)l)Rg?r

— P2 Vi1 +(1—B2)-

1\}54—1&!/(21:%) R — My, Vi e RmXZ,E < n
Vi Vi/(1- 8))
N e MR+ = | ower memory footprint than

Gt +a-PN; {Project back to original space}

Wi < Wie1 +1n-Ge LORA

t—t+1 . .
until convergence criteria met ] Better SUIted for pre_tra”’“ng
return Wy

UJ JULICH
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GALORE: MEMORY-EFFICIENT LLM TRAINING BY GRADIENT LOW-RANK PROJECTION

Algorithm 2: Adam with GaLore

Input: A layer weight matrix W € R *™ with m < n. Step size 7,
scale factor cv, decay rates 31, 32, rank r, subspace change frequency

Initialize first-order moment My € R™*" «— 0
Initialize second-order moment Vy € R X7 « 0

1_2;:5::26 stept 0 J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, Y.
Gy € R™X™  —Vyyo(Wy) Tian. “GaLore:lMgmoﬂry»Efficient LLM Training by Gradient
if t mod T = O then Low-Rank Projection”, 2024.

U, S,
else
P+ Pi—1 {Reuse the previous projector} Computlng the Whole SVD |S
end if
Ri + PGy {Project gradient into compact space } hor”bly |neff|C|ent, When a" you
UPDATE(Ry) by Adam want is an approximate basis of
Mg < By Mi—y + (1= B1) - Re
Ve B Viea + (1= f2) R} range(Gi).

My« M /(1 — B
Vi <= Ve/(1 - BY)
Ni + Me/(VVi +€)

Gy + a- PN, {Project back to original space}
Wi« Wio1+n-Ge
t—t+1

until convergence criteria met

return W;

CJ JULICH
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THE RANDOMIZED RANGE FINDER

The right tool for the job

ALGORITHM 4.1: RANDOMIZED RANGE FINDER

Given an m X n matriz A, and an integer £, this scheme computes an m x {
orthonormal matriz Q whose range approximates the range of A.

1 Draw an n x £ Gaussian random matrix 2.

2 Form the m x ¢ matrix Y = AQ.

3 Construct an m x £ matrix  whose columns form an orthonormal
basis for the range of Y, e.g., using the QR factorization Y = QR.

N. Halko, P-G. Martinsson, J. A. Tropp. “Finding structure with randomness: Probabilistic algorithms for constructing approximate
matrix decompositions”, 2010.

For an oversampling parameter p € N, 0 < p < r, we have

IA— QQTA||, < (1 F11Yr - /min{m, n}) Orpit (1)
with a probability of at least 1 — 6 - p~? under mild assumptions on p.

CJ JULICH
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THE RANDOMIZED RANGE FINDER

The right tool for the job

ALGORITHM 4.1: RANDOMIZED RANGE FINDER

Given an m X n matriz A, and an integer £, this scheme computes an m x {
orthonormal matriz Q whose range approxrimates the range of A.

1 Draw an n x ¢ Gaussian random matrix 2.

2 Form the m x ¢ matrix Y = AQ.

3 Construct an m x ¢ matrix @ whose columns form an orthonormal
basis for the range of Y, e.g., using the QR factorization Y = QR.

N. Halko, P-G. Martinsson, J. A. Tropp. “Finding structure with randomness: Probabilistic algorithms for constructing approximate
matrix decompositions”, 2010.

Plug this in and get a speedup of 10x and more compared to full SVD
composition, with similar loss curve.

CJ JULICH
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THE ADAPTIVE RANDOMIZED RANGE
FINDER

® |n later iterations,
lower rank suffices
for same
approximation
quality.

m |dea: Fix tolerance
for subspace
approximation
instead of rank and
use adaptive
randomized
rangefinder.
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® |n |ater iterations,

lower rank suffices
for same
approximation
quality.

Idea: Fix tolerance
for subspace
approximation
instead of rank and
use adaptive
randomized
rangefinder.

Variant of classical
Gram-Schmidt
orthogonalization.
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THE ADAPTIVE RANDOMIZED RANGE
FINDER

ALGORITHM 4.2: ADAPTIVE RANDOMIZED RANGE FINDER

with probability at least 1 — min{m,n}10~".

1 Draw standard Gaussian vectors w("), ..., w() of length n.
2 Fori=1,2,...,r, compute y) = Aw.

3 j=0.

4 Q© =[], the m x 0 empty matrix.

5 while ma.x{”y(’“)w Hy(”?)Hv . Hy“*”” } > e/(104/2/7),
6 j=j+1

7 Overwrite y@) by (1 —QU-Y (Q(ﬁl))*)yu)_

8 q) :y(])/Hy(])Hl

9 QY) = [Q(/’” q(/)]‘

10 Draw a standard Gaussian vector w+") of length n.
11 y(j+r> — (I — Q(J)(QU))*) Awl+r),

12 fori=(j+1),(G+2),...,(j+r—1),

13 Overwrite y by y® — ¢@) <q(]). y(’)>.

14 end for

15 end while

16 Q=QUV.

Given an m x n matriz A, a tolerance €, and an integer r (e.g. r = 10), the
following scheme computes an orthonormal matriz Q such that (4.2) holds

N

Halko, P-G. Martinsson, J. A. Tropp. “Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions”, 2010.
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A BLOCKED ADAPTIVE RANDOMIZED
RANGE FINDER

= A blocked algorithm is required to effiently exploit the memory
hierarchy of modern hardware, including GPUs.

] |
Q @ - Q

b

| |
A{m QW ... Q
| \

- B, -

Compute Qi: AQy = Q1Ry, By = QA
Compute Q: (I — Q1Q])AQ = QRs, B> = QJA
Compute Qs: (/- [Q1 @] [Q1 Q2] )AQs = QsRs, Ro = QIA
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A BLOCKED ADAPTIVE RANDOMIZED
RANGE FINDER

function [Q, B] = randQB b(A, ¢, b)
(1) fori=1,2,3,...
(2) Q; = randn(n, b)
(3) Q; = orth(AQ;) Cinmmnb + Cq[me
(3) Q; = orth(Q; — 217:1 Q_7Q;Q1‘) 2(i — 1)Crnmmb?® + qumb2
(4) B; = Q;A Cmmnb
(5) A=A-QB; Crmmnb
(6) if ||A|| < € then stop
(7)  end for
(8) SetQ=1[Q --- QJand B=[B] --- Bj]".

P.-G. Martinsson, S. Voronin. “A randomized blocked algorithm for efficiently computing rank-revealing factorizations of matrices”,
2015.

= Orthogonalizations are accumulated in A, which approaches zero
and becomes a non-probabilistic error indicator.
— not ideal in memory-constrained environment.
= Reorthogonalization (line 3’) may be necessary in floating point
arithmetic to ensure orthogonality of Q.
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A HOUSEHOLDER BLOCKED ADAPTIVE
RANDOMIZED RANGE FINDER

m |dea: Adaptively compute Householder-QR decomposition of
A[Qo ... Q] infactored form (geqrt3-style).



A HOUSEHOLDER BLOCKED ADAPTIVE
RANDOMIZED RANGE FINDER

m |dea: Adaptively compute Householder-QR decomposition of
A[Qo ... Q] infactored form (geqrt3-style).

= V (lower triangular): contains Householder vectors representing Q, s.t.
QR=A[Q ... Q4
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A HOUSEHOLDER BLOCKED ADAPTIVE
RANDOMIZED RANGE FINDER

m |dea: Adaptively compute Householder-QR decomposition of
A[Qo ... Q] infactored form (geqrt3-style).

= V (lower triangular): contains Householder vectors representing Q, s.t.
QR=A[Q ... Q4

m A: Used to store B.
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A HOUSEHOLDER BLOCKED ADAPTIVE
RANDOMIZED RANGE FINDER

m |dea: Adaptively compute Householder-QR decomposition of
A[Qo ... Q] infactored form (geqrt3-style).

= V (lower triangular): contains Householder vectors representing Q, s.t.
QR=A[Q ... Q4

m A: Used to store B.

m T: Contains triangular blocks of storage-efficent QR decomposition of
block reflectors

T=[T ]
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A HOUSEHOLDER BLOCKED ADAPTIVE
RANDOMIZED RANGE FINDER

m |dea: Adaptively compute Householder-QR decomposition of
A[Qo ... Q] infactored form (geqrt3-style).

= V (lower triangular): contains Householder vectors representing Q, s.t.
QR=A[Q ... Q4

m A: Used to store B.

m T: Contains triangular blocks of storage-efficent QR decomposition of
block reflectors

_ B -

. | - B -

V: V1 V5 Vk 7B: . 9

o | L
T=[T T, - T
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A HOUSEHOLDER BLOCKED ADAPTIVE
RANDOMIZED RANGE FINDER

= Stopping criterion: Use scalar error based on Frobenius norm from
W. Yu, Y. Gu, Y. Li. “Efficient Randomized Algorithms for the Fixed-Precision Low-Rank Matrix Approximation”, 2018.

Algorithm 1: Householder block adaptive randomized range finder
Require: A matrix A € R™<" a tolerance o, and a block size b.

1: E <+ ||Ale

2: B+ A

3 i1

4: while E > o do

5:  Fill Q € R™P with values from a standard Gaussian distribution.

6: Vi, T; < ar(A;..Q) {Storage-efficient QR decomposition,
geqrt}

7 Bf:.: ~ (I_ V/TIVIT)B/

8 E+ E—|BlF
9 i« i+1
10: end while
11: r=i-1
12: V« V.o,
13: B < By,
Ensure: V € R™*"® Householder vectors, B € R™*",
To,..., T; € RP*P such that A— QB < o, where
Q=1IIio(I - ViTV])
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HOUSEHOLDER VS. GRAM-SCHMIDT

Stability
= Modified Gram Schmidt:
Q"Q =1+ Euas, |Ewmcsll2 ~ ura(A)
= Householder QR:
Q'Q=1I+Ey |Exlz~u
= We observed in our application, x2(A) will become very large.
Operation count
= In factored form (Householder) and without reorthogonalization
(Gram-Schmidt) both take around 2mn? operations.
Practical issues
m GPU-based, optimized version for Householder-QR are available
(MAGMA library) and can be adapted for the rangefinder
algorithm.
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OVERLAP COMMUNICATION,
COMPUTATION AND RANDOM GENERATION

Queue 1 Queue 2 Queue 3
Create Q4
Vi + AQq4 Create Q,
V1,T1eqr(V1) V2<—AQQ
Vo (/ - Wi Ty V1T) Vo | A+ (/ - WU V1T)A Create Qg
Vg, To qr( V2) V3 «— AQj3
Vs (I —VWT5 V2T) Vg | A« (I - VWT> V2T)A Create Q4
V3, T3 — qr( V3) V4 +— AQq

= More operations (explicit panel update) in favor of exposed
parallelism.
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FURTHER RESEARCH

= Experiments and results.

Relative vs. absolute stopping criterion.

How do stability results translate to randomized setting.
Two-sided projections

Mix Gram-Schmidt and QR

= Cholesky QR

Other decompositions from Randomized Numerical Linear Algebra
Extend to higher dimensional tensors.

Formalize relationship between LoRA and Galore

How to find a good rank for LoORA?

Member of the Helmholtz Association September 11, 2024 Slide 22



MORE INTERESTING RESEARCH
OPPORTUNITIES

Machine Learning Methods Mathematical Tools Target Hardware

Numerical Linear Algebra
Large Language Fourier Neural
Models Operators. + Low-rank tensor decompositions
* Randonized NLA
. Exascale HPC
« Communication-avoiding algorithms
Solving large scale « Krylow methods
Transtomer PoEs - A
arcttectures 1
1
Al Accel-
Used in Paralelin GPUs g b
Time Methods > Coraors
Protof Gonopt. 1
State Space ot sonrd
Methods Comcion 1
Model Order Reduction L 7
« System-theoretic MOR for linear systems
Balanced truncation, interpolation- (BT
i i i based jorkstations
Parameter Efficient Finetuning o BT Workstati
Loewner framework, Eigenvalue
Ra variant realization algorithms
LoRa variants + MOR for noninear sysiems

o Proper orthogonal decomposition,
Discrete empirical interpolation methd

Thank you for your attention!
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