Home > Publications database > Mathematical Techniques to Reduce Memory Requirements in Deep Learning > print |
001 | 1034067 | ||
005 | 20250203103442.0 | ||
024 | 7 | _ | |a 10.34734/FZJ-2024-06888 |2 datacite_doi |
037 | _ | _ | |a FZJ-2024-06888 |
100 | 1 | _ | |a Penke, Carolin |0 P:(DE-Juel1)192254 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a OpenGPT-X Forum 2024 |c Berlin |d 2024-11-05 - 2024-11-05 |w Germany |
245 | _ | _ | |a Mathematical Techniques to Reduce Memory Requirements in Deep Learning |
260 | _ | _ | |c 2024 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a Other |2 DataCite |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Conference Presentation |b conf |m conf |0 PUB:(DE-HGF)6 |s 1736491132_20972 |2 PUB:(DE-HGF) |x Other |
520 | _ | _ | |a We present a method to substantially lower memory requirements during the training of deep neural networks, based on the GaLore (Gradient Low-Rank Projection) training framework. A rapid decay of singular values in gradient matrices permits the use of low-rank bases to encapsulate the relevant subspaces, reducing the memory requirements for storing optimizer states between iterations. A novel, rank-adaptive, GPU-optimized version of the randomized range finder algorithm is employed to exploit this property and future research directions are discussed. |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a OpenGPT-X - Aufbau eines Gaia-X Knotens für große KI-Sprachmodelle und innovative Sprachapplikations-Services; Teilvorhaben: Optimierung und Skalierung auf großen HPC-Systemen (68GX21007F) |0 G:(DE-Juel-1)68GX21007F |c 68GX21007F |x 1 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1034067/files/LowRankRepresentationsDL.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1034067 |p openaire |p open_access |p VDB |p driver |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)192254 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a conf |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|