001     1034067
005     20250203103442.0
024 7 _ |a 10.34734/FZJ-2024-06888
|2 datacite_doi
037 _ _ |a FZJ-2024-06888
100 1 _ |a Penke, Carolin
|0 P:(DE-Juel1)192254
|b 0
|e Corresponding author
|u fzj
111 2 _ |a OpenGPT-X Forum 2024
|c Berlin
|d 2024-11-05 - 2024-11-05
|w Germany
245 _ _ |a Mathematical Techniques to Reduce Memory Requirements in Deep Learning
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1736491132_20972
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a We present a method to substantially lower memory requirements during the training of deep neural networks, based on the GaLore (Gradient Low-Rank Projection) training framework. A rapid decay of singular values in gradient matrices permits the use of low-rank bases to encapsulate the relevant subspaces, reducing the memory requirements for storing optimizer states between iterations. A novel, rank-adaptive, GPU-optimized version of the randomized range finder algorithm is employed to exploit this property and future research directions are discussed.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a OpenGPT-X - Aufbau eines Gaia-X Knotens für große KI-Sprachmodelle und innovative Sprachapplikations-Services; Teilvorhaben: Optimierung und Skalierung auf großen HPC-Systemen (68GX21007F)
|0 G:(DE-Juel-1)68GX21007F
|c 68GX21007F
|x 1
856 4 _ |u https://juser.fz-juelich.de/record/1034067/files/LowRankRepresentationsDL.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1034067
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192254
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 1 _ |a FullTexts
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21