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TRAINING LARGE MODELS

Training these large models needs
Lots of computational resources (GPUs!),
Lots of data.

Pretraining happens on supercomputers.

(R-U. Limbach / Forschungszentrum Jülich)

Finetuning of smaller models happens on
workstations.

NVIDIA
In both settings, you want to use limited resources efficiently.
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GPU MEMORY REQUIREMENTS DURING TRAINING

Using the mixed-precision Adam optimizer.
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+ Activations, depending on sequence length and batch size.
Activations can be reduced using activation checkpointing.
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MATRICES EVERYWHERE

Parameter matrix
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A layer in a neural network is represented by matrices.
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LOW-RANK APPROXIMATIONS

When a matrix has (numerical) low rank, it can be approximated well by smaller
matrices.

G

m × n

≈ L

m × k

× R⊤

k × n

Numerical low rank can be observed for gradients, momentum and variance.
→ These matrices can be compressed.
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OBSERVING LOW RANK

The singular values of a matrix describe, how well a matrix can be approximated with a
low-rank decomposition.
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OBSERVING LOW RANK

The singular values of a matrix describe, how well a matrix can be approximated with a
low-rank decomposition.

Here, a low rank decomposition with k = 100 (instead of n = 512) has an approximatiion
quality of 90%.
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after various iterations.
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EXPLOITING LOW RANK
LoRA: Low-Rank Adaptation of Large
Language Models

GaLore: Memory-Efficient LLM Training
by Gradient Low-Rank Projection

Established method for finetuning LLMs
under memory constraints.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen.
“LoRA: Low-Rank Adaptation of Large Language Models”, 2021.

New method, projecting to low-rank
subspace computed from gradient matrix.
Lower memory footprint, better suited for
pre-training.

¸

J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, Y. Tian. “GaLore:
Memory-Efficient LLM Training by Gradient Low-Rank Projection”, 2024.
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SINGULAR VALUE DECOMPOSITION IN GALORE

GaLore computes a singular value
decomposition to get subspace
basis.
The randomized range finder is a
more efficient method.

J. Zhao, Z. Zhang, B. Chen, Z. Wang, A.
Anandkumar, Y. Tian. “GaLore: Memory-Efficient
LLM Training by Gradient Low-Rank Projection”,
2024.
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THE RANDOMIZED RANGE FINDER
The right tool for the job

N. Halko, P.-G. Martinsson, J. A. Tropp. “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions”, 2010.

For an oversampling parameter p ∈ N, 0 ≤ p ≤ r , we have

∥A − QQT A∥2 ≤
(

1 + 11
√

r ·
√

min{m,n}
)
σr−p+1

with a probability of at least 1 − 6 · p−p under mild assumptions on p.
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PRELIMINARY RESULTS

Training a 60M Llama model, using rank 128, subspace computation in every step.

Currently in development: GPU-optimized randomized rangefinder.
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CONCLUSIONS

OpenGPT-X spawned promising research directions in the area of efficient resource
utilization during pre-training (AP1).
More interesting research: Find Chelsea John’s poster.

Thank you for your attention!
This work was funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) through the project OpenGPT-X (project no. 68GX21007D).
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