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TRAINING LARGE MODELS

Training these large models needs
= Lots of computational resources (GPUs!),
= |Lots of data.

Pretraining happens on supercomputers. Finetuning of smaller models happens on
workstations.

(R-U. Limbach / Forschungszentrum Julich)

NVIDIA
In both settings, you want to use limited resources efficiently.
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GPU MEMORY REQUIREMENTS DURING TRAINING

Using the mixed-precision Adam optimizer.

12.5%
25%
> 12.5%
25% 25%

O Parameters (BF16)
O Gradients (BF16)
O Momentum (F32)
O Variance (FP32)

O Parameters (FP32)

+ Activations, depending on sequence length and batch size.
= Activations can be reduced using activation checkpointing.
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MATRICES EVERYWHERE
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Parameter matrix

Gradient matrix

Momentum matrix

Variance matrix

0.23 | -0.15 0.5 -0.05 0.2 -0.1 0.01 0.02 | -0.01 0.1 0.15 0.2
0.1 0.45 | -0.35 0.15 | -0.25 | 0.05 -0.03 | 0.04 | -0.02 0.05 | 0.12 0.18
-0.2 0.3 0.25 0.1 -0.15 0.3 0.05 | -0.01 | 0.06 0.22 0.25 0.3
0.4 -0.1 -0.05 -0.05 0.4 -0.2 -0.04 | 0.03 | -0.05 0.08 0.1 0.13

A layer in a neural network is represented by matrices.
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LOW-RANK APPROXIMATIONS

= When a matrix has (numerical) low rank, it can be approximated well by smaller
matrices.

mxn mx k kxn

= Numerical low rank can be observed for gradients, momentum and variance.
— These matrices can be compressed.
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OBSERVING LOW RANK

The singular values of a matrix describe, how well a matrix can be approximated with a
low-rank decomposition.

@) JuLicH

Member of the Helmholtz Association November 5, 2024 Slide 6



OBSERVING LOW RANK

The singular values of a matrix describe, how well a matrix can be approximated with a
low-rank decomposition.

Singular value decay
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Here, a low rank decomposition with kK = 100 (instead of n = 512) has an approximatiion
quality of 90%.
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi})e
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OBSERVING LOW RANK

Singular value decay
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Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi}JeS%tLigr']s.
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OBSERVING LOW RANK

Singular value decay
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Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi})ez%tLigﬂs.
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi})e
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi)Je
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi)Je
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi)Je
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi)Je
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi)Je
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi)Je
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EXPLOITING LOW RANK

LoRA: Low-Rank Adaptation of Large
Language Models

= Established method for finetuning LLMs
under memory constraints.
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Figure 1: Our reparametriza-

tion. We only train A and B.
E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen.
“LoRA: Low-Rank Adaptation of Large Language Models”, 2021.
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GalLore: Memory-Efficient LLM Training
by Gradient Low-Rank Projection
= New method, projecting to low-rank
subspace computed from gradient matrix.

= L ower memory footprint, better suited for
pre-training.
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J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, Y. Tian. “Gglore:

Memory-Efficient LLM Training by Gradient Low-Rank Projection”; ZLQLICH
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SINGULAR VALUE DECOMPOSITION IN GALORE

Algorithm 2: Adam with GaLore

Input: A layer weight matrix W € R™*™ with m < n. Step size 7, u Gal—ore Computes a Singular Value

scale factor a, decay rates 31, B2, rank 7, subspace change frequency

T decomposition to get subspace
Initialize first-order moment Mo € R" X" 0 .
Initialize second-order moment V) € R" X" «— 0 bas's_
Initialize step t <— 0
repeat . . .
pgf;; ER Vi (V) = The randomized range finder is a
itz et projector more efficient method.
< Ul nitialize left projector as m < n}

P+ Py {Reuse the previous projector }
end if

R + PGy {Project gradient into compact space }

AT J. Zhao, Z. Zhang., B. Chen, Z. Wang, A. N
AN R A M Anandkumar, Y. Tian. “GalLore: Memory-Efficient
M: VA?(/lQ 5 p)f) LLM Training by Gradient Low-Rank Projection”,
N+ M/ (VT O 2024.

Gt < a- PNt {Project back to original space}
Wi+ Wi1 +n- Gy
tt+1

until convergence criteria met

return W;

else
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THE RANDOMIZED RANGE FINDER

The right tool for the job

ALGORITHM 4.1: RANDOMIZED RANGE FINDER

Given an m X n matriz A, and an integer £, this scheme computes an m x £
orthonormal matriz Q whose range approximates the range of A.

1 Draw an n x ¢ Gaussian random matrix €.
Form the m x ¢ matrix Y = AQ.
Construct an m x £ matrix @ whose columns form an orthonormal
basis for the range of Y, e.g., using the QR factorization ¥ = QR.

N. Halko, P-G. Martinsson, J. A. Tropp. “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions”, 2010.

For an oversampling parameter p € N, 0 < p < r, we have

IA— QQT A2 < (1 F 11/ - /min{m, n}) Orpit

with a probability of at least 1 — 6 - p~P under mild assumptions on p.

Member of the Helmholtz Association November 5, 2024 Slide 10

@) JuLicH



PRELIMINARY RESULTS

= Training a 60M Llama model, using rank 128, subspace computation in every step.

Convergence for various methods

— Galore with adaptive Randomized Rangefinder GaLore with Randomized Rangefinder -
— Galore with SYD — No Galore 4
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= Currently in development: GPU-optimized randomized rangefinder.
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PRELIMINARY RESULTS

= Training a 60M Llama model, using rank 128, subspace computation in every step.

Throughput in examples/s

Galore with adaptive Randomized Rangefinder

— Galore with SVD No Galore 4
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= Currently in development: GPU-optimized randomized rangefinder.
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CONCLUSIONS

= OpenGPT-X spawned promising research directions in the area of efficient resource
utilization during pre-training (AP1).

= More interesting research: Find Chelsea John’s poster.

Performance and Power: Systematic Evaluation of Al
Workloads on Accelerators with CARAML

Chelsea Maria John @, Stepan Nassyr @, Carolin Penke ©, Andreas Herten
Jiitich Supercompuring Centre
Forschungszentrum Jalich
Jilich, Germany

Thank you for your attention!
This work was funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) through the project OpenGPT-X (project no. 68GX21007D).
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