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OPENGPT-X (01/2022 - 03/2025)

openGPT-X

Multilingual. Open. European.
OpenGPT-X develops large Al language
models that enable new data-driven business
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Funded by German Federal Ministry for Economic Affairs and Climate Action (BMWK).
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https://opengpt-x.de/en/

OPENGPT-X (01/2022 - 03/2025)
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MODEL RELEASE

Our model was released yesterday (2024/11/26)!

openGPT-X

Teuken 7B Instruct

Multilingual, open source models for Europe — instruction-tuned and
trained in all 24 EU languages

A Download (Hugging Face) A Discuss (Discord) = Book a Demo (Fraunhofer IAIS)

https://opengpt-x.de/en/models/teuken-7b/
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TRANSFORMER-BASED LARGE LANGUAGE MODELS

Output
Probabilities

Add & Norm
Feed
Forward
Add & Norm

Multi-Head
Attention

= Tranformers are the dominant
neural network architecture for
language models.

Add & Norm

= Become large by increasing number ™
of transformer layers or hidden T CEEED | [ e
dimension. el

= General trend: More parameters — ostiona () Fostend
more capabilities, given enough Erbang | Lz
data and compute resources. routs omlm

(shifted right)
Attention is all you need, A. Vaswani, N. Shazeer, N. Parmar,
J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, |. Polosukhin
) Joick
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TRAINING LARGE MODELS

Training these large models needs

= Lots of computational resources (GPUs!),

= |Lots of data.
Pretraining happens on supercomputers. Finetuning of smaller models happens on
workstations.

(R-U. Limbach / Forschungszentrum Jiilich)

NVIDIA
In both settings, you want to use limited resources efficiently.

lJ JULICH
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JUPITER: EXASCALE IN EUROPE

Next-Gen Al Performance
24 000

NVIDIA Grace Hopper Superchips.

= New supercomputer, currently being installed at Jilich Supercomputing Centre, fully
operational in 2025.

= ~ 6000 nodes with 4 NVIDIA Grace-Hopper superchips each.

= 108 floating point operations per second (double precision).

= 20x faster than current #1 in Germany (JUWELS Booster)
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GPU MEMORY REQUIREMENTS DURING TRAINING

Using the mixed-precision Adam optimizer.

12.5%
25%
> 12.5%
25% 25%

O Parameters (BF16)
O Gradients (BF16)
O Momentum (F32)
O Variance (FP32)

O Parameters (FP32)

+ Activations, depending on sequence length and batch size.
= Activations can be reduced using activation checkpointing.
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MATRICES EVERYWHERE

O

@)

@)

Parameter matrix

Gradient matrix

Momentum matrix

Variance matrix

0.23 | -0.15 0.5 -0.05 0.2 -0.1 0.01 0.02 | -0.01 0.1 0.15 0.2
0.1 0.45 | -0.35 0.15 | -0.25 | 0.05 -0.03 | 0.04 | -0.02 0.05 | 0.12 0.18
-0.2 0.3 0.25 0.1 -0.15 0.3 0.05 | -0.01 | 0.06 0.22 0.25 0.3
0.4 -0.1 -0.05 -0.05 0.4 -0.2 -0.04 | 0.03 | -0.05 0.08 0.1 0.13

A layer in a neural network is represented by matrices.
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LOW-RANK APPROXIMATIONS

= When a matrix has (numerical) low rank, it can be approximated well by smaller
matrices.

()
Q
-
X

RT

mxn mx k kxn

= Numerical low rank can be observed for gradients, momentum and variance.
— These matrices can be compressed.
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OBSERVING LOW RANK

The singular values of a matrix describe, how well a matrix can be approximated with a
low-rank decomposition.

@) JuLicH
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OBSERVING LOW RANK

The singular values of a matrix describe, how well a matrix can be approximated with a
low-rank decomposition.

Singular value decay

— lIteration 0

0.8

o

o
=

Scaled singular values

o

0.0 &

0 100 200 300 400 500
Index

Here, a low rank decomposition with kK = 100 (instead of n = 512) has an approximatiion
quality of 90%.
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi})e

Member of the Helmholtz Association

10

e e e
S o =

Scaled singular values

o
o

0.0

100

Singular value decay

200

November 27, 2024

Index

300

400

—— lteration 0

Slide 12

500

rations.
JULICH



OBSERVING LOW RANK

Singular value decay

10 —— lteration 0
—— lteration 10

e e e
S o =

Scaled singular values

o
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0.0
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Index

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi}JeS%tLigr']s.
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OBSERVING LOW RANK

Singular value decay

10 —— lteration 0
—— lteration 10
—— lteration 20
0.8
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Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi})ez%tLigﬂs.
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi})e
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi)Je
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi)Je
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi)Je
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi)Je
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi)Je
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OBSERVING LOW RANK

Figure: Singular value decay of gradient for first layer in pre-training 60M Llama model after variousi)Je
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EXPLOITING LOW-RANK

LoRA: Low-Rank Adaptation of Large Language Models

= The weight updates of each layer are
accumulated in two low-rank matrices.

= Mulitple LORA adapters possible for multiple
fine-tuned models from one base model.

= ris chosen a priori (as a hyperparameter).
= Not suited for pre-training.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. “LoRA:
Low-Rank Adaptation of Large Language Models”, 2021.
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Figure 1: Our reparametriza-
tion. We only train A and B.
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EXPLOITING LOW-RANK ANOTHER WAY

GalLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

" T J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, Y. Tian. “GaLore: Memory-Efficient
Algorithm 2: Ad; th GaL
gorithm am with Gal ore LLM Training by Gradient Low-Rank Projection”, 2024.

= Compute projection subspace every couple

Input: A layer weight matrix W € R™*™ with m < n. Step size 7,
scale factor a, decay rates 81, B2, rank r, subspace change frequency
T.

Initialize first-order moment My € R™X" < 0

}m:m{lze Tco:d—orger moment Vy € R"X" + ( Of iterations
repeat T ) L
GreRT " ¢ o vwin() = Compute full-rank gradient, then project it
if t mod T = 0 then
U,S, v SVD(G+ . .
P Ui ) (@ {Initialize left projector as m < n} = Update optimizer states (Momentu m,
it P {Reuse he previous projctor) Variance) with projected gradient.
Ry < PGy {Project gradient into compact space}

UPDATE(R¢) by Adam

— My, Vi € Rm”,ﬁ <n
A P = Lower memory footprint than LoRA.

My« M, /(1 - B)
Vi Vi/(1 - BY)

Ne e My/(JVi +) = Better suited for pre-training.

Gt < a-PN; {Project back to original space}
Wi Wi +n-Gt
tt+1

until convergence criteria met

return W;

9 JULICH
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EXPLOITING LOW-RANK ANOTHER WAY

GalLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

" T J. Zhao, Z. Zhang, B. Chen, Z. Wang, A. Anandkumar, Y. Tian. “GalLore: Memory-Efficient
Algorithm 2: Ad: th GaL S S, ? P ;
s a"} i - aore - " LLM Training by Gradient Low-Rank Projection”, 2024.
Input: A layer weight matrix W € R™*™ with mn < n. Step size 1,
scale factor cv, decay rates 31, 32, rank r, subspace change frequency
T I
Initialize first-order moment My € R™ %" « 0
Initialize second-order moment Vy € R™ %" « 0 A R R A R—~R
Iniilize step 0 ’ Computing the whole SVD is horribly inefficient,
repeat . . .
G R o T (V) when all you want is an approximate basis of
o 11101 = en
(U, S,V < SVD(GY) | ( )
U, {Initialize left projector as m < n} range Gt .
else
P; + Py {Reuse the previous projector}
end if
R + P,T Gy {Project gradient into compact space }

UPDATE(R¢) by Adam
Mg« By My—y+ (1= B1) - Re
Vi B2-Vic1+(1—B2) - R}
My < M /(1 - B)
Vi = Vi/(1 - B5)
Ni = M/ (Vi +€)

Gt a-PN; {Project back to original space}
Wi« Wi—14+n-Gy
tt+1

until convergence criteria met

return W;

lJ JULICH
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THE RANDOMIZED RANGE FINDER

The right tool for the job

ALGORITHM 4.1: RANDOMIZED RANGE FINDER

Given an m X n matriz A, and an integer £, this scheme computes an m x £
orthonormal matriz Q whose range approximates the range of A.

1 Draw an n x ¢ Gaussian random matrix €.
Form the m x ¢ matrix Y = AQ.
Construct an m x £ matrix @ whose columns form an orthonormal
basis for the range of Y, e.g., using the QR factorization ¥ = QR.

N. Halko, P-G. Martinsson, J. A. Tropp. “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions”, 2010.

For an oversampling parameter p € N, 0 < p < r, we have

IA— QQT A2 < (1 F 11/ - /min{m, n}) Orpit

with a probability of at least 1 — 6 - p~P under mild assumptions on p.
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PRELIMINARY RESULTS

= Training a 60M Llama model, using rank 128, subspace computation in every step.

Convergence for various methods

— Galore with adaptive Randomized Rangefinder Galore with Randomized Rangefinder a
— Galore with SVD = No Galore &

._.
o
Loss

6 m'

500 1k 1.5k 2k

) Jivich
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PRELIMINARY RESULTS

= Training a 60M Llama model, using rank 128, subspace computation in every step.

Throughput in examples/s

— Galore with adaptive Randomized Rangefinder Galore with Randomized Rangefinder -
— Galore with SVD = No Galore &

100
© ""”'"""']‘|”" "I pavpre ww]ﬂﬁ]‘m.,. v..ﬂ'..,‘.u,»,“,,w \[‘,,.‘..M[‘Wﬁ RS R A
60
40
20 o
Step
500 1k 1.5k 2k

Member of the Helmholtz Association November 27, 2024 Slide 16

9

JULICH



THE ADAPTIVE RANDOMIZED RANGE FINDER

® |n later iterations, lower
rank suffices for same
approximation quality.

m |dea: Fix tolerance for
subspace approximation
and compute basis vectors
iteratively.

N. Halko, P.-G. Martinsson, J. A. Tropp. “Finding
structure with randomness: Probabilistic
algorithms for constructing approximate matrix
decompositions”, 2010.

Member of the Helmholtz Association

ALGORITHM 4.2: ADAPTIVE RANDOMIZED RANGE FINDER

Given an m x n matriz A, a tolerance £, and an integer r (e.g. v = 10), the
following scheme computes an orthonormal matriz @ such that (4.2) holds
with probability at least 1 — min{m,n}107".

1 Draw standard Gaussian vectors w™® ... w of length n.
2 Fori=1,2,...,r, compute y) = Aw®.

3 j=0.

4 QU= [], the m x 0 empty matrix.

5  while max { Hy(JJrl) H Hy“*Z)H S Hy(H")H} > e/(10/2/7),
6 j=j+1

7 Overwrite y(7) by (I — Q(j’l)(Q(j’l))*)y(j).

8 q'9) :y(l)/‘ y(J)H.

9 QU) = [Q(rl) q(y)]_

10 Draw a standard Gaussian vector w7 of length n.
1 YUt = (I — Q(f)(Q(]))*) AwU+)

12 fori=(j+1),(+2),....,(j +r—1),

1 Overwrite g by y) — i) (g, y®).

14 end for

15 end while

16 Q=QU.
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THE ADAPTIVE RANDOMIZED RANGE FINDER

® |n later iterations, lower
rank suffices for same
approximation quality.

m |dea: Fix tolerance for
subspace approximation
and compute basis vectors
iteratively.

® Variant of classical
Gram-Schmidt
orthogonalization.

N. Halko, P.-G. Martinsson, J. A. Tropp. “Finding
structure with randomness: Probabilistic
algorithms for constructing approximate matrix
decompositions”, 2010.
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ALGORITHM 4.2: ADAPTIVE RANDOMIZED RANGE FINDER

Given an m x n matriz A, a tolerance £, and an integer r (e.g. v = 10), the
following scheme computes an orthonormal matriz @ such that (4.2) holds
with probability at least 1 — min{m,n}107".

1 Draw standard Gaussian vectors w™®, ..., w of length n.
2 Fori=1,2,...,r, compute y) = Aw®.
3 j=0.
4 QU= [], the m x 0 empty matrix.
5  while max { Hy(JJrl) H Hy“*Z)H S Hy(H")H} > e/(10/2/7),
6 j=j+1
7 Overwrite y/) by (I — Q(j’l)(Q(j’l))*)y(f).
8 q'9) :y(])/‘ y(J)H.
9 QU) = [Q(J*l) q(])]_
10 Draw a standard Gaussian vector w(*7) of length n.
1 YUt = (I — Q(J)(Q(]))*) AwU+)
12 fori=(j+1),(j+2),....,(j+r—1),
3 Overwrite y® by g — g (g, y).
14 end for
15 end while
16 Q= Q(]).
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GPU-OPTIMIZED VERSION

= |n deep learning, matrices reside on GPUs, we want to use them.

= Divide matrices into blocks to exloit memory locality and tensor cores.

= |nspiration from GPU-accelerated QR decomposition.

= Goal: Compute A = QB factorization, where Q comes from AQ = QR, store
Householder vectors, i.e. Q = [[;(/ — V;T;V/).
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GPU-OPTIMIZED VERSION

= |n deep learning, matrices reside on GPUs, we want to use them.

= Divide matrices into blocks to exloit memory locality and tensor cores.

= |nspiration from GPU-accelerated QR decomposition.

= Goal: Compute A = QB factorization, where Q comes from AQ = QR, store
Householder vectors, i.e. Q = [[;(/ — V;T;V/).

_ B1 _
V= V1 7B: )

B v (lower triangular): contains Householder vectors
B A: Used to store B.
B T: Contains triangular blocks of storage-efficent QR decomposition of block reflectors

Member of the Helmholtz Association November 27, 2024 Slide 18



GPU-OPTIMIZED VERSION

= |n deep learning, matrices reside on GPUs, we want to use them.

= Divide matrices into blocks to exloit memory locality and tensor cores.

= |nspiration from GPU-accelerated QR decomposition.

= Goal: Compute A = QB factorization, where Q comes from AQ = QR, store

Householder vectors, i.e. Q = [[;(/ — V;T;V/).

|
V=V

B v (lower triangular): contains Householder vectors
B A: Used to store B.

|
Vs

T=[T

To

, B=

B T: Contains triangular blocks of storage-efficent QR decomposition of block reflectors
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GPU-OPTIMIZED VERSION

= |n deep learning, matrices reside on GPUs, we want to use them.

= Divide matrices into blocks to exloit memory locality and tensor cores.

= |nspiration from GPU-accelerated QR decomposition.

= Goal: Compute A = QB factorization, where Q comes from AQ = QR, store
Householder vectors, i.e. Q = [[;(/ — V;T;V/).

| | B
V = \/1 V5 Vk 7B: . ,

o | B
T=[W T» - T4

B v (lower triangular): contains Householder vectors
B A: Used to store B.
B T: Contains triangular blocks of storage-efficent QR decomposition of block reflectors
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Algorithm 1 Householder Block Adaptive Randomized Range Finder

Reqmre A matrix A € R™" atolerance ¢, and a block size b.

L E <« |l

B+ A

i< 0

while E > ¢ do
Fill Q € R™P with values from a standard Gaussian distribution.
(Viji, Ti) < ar(Bij0:kQ) > Storage-efficient QR decomposition, geqrt
Bik < (1= ViT;V/")Bix
E« E—||BiF
i< i+1

10: end while

11 Ve Vigig

12: B« BO:I'—1,:

18 r«(@(i—-1)-b

Ensure: Rank r, Householder vectors VeR™ BeR™" Ty, ..., Ti_q € RP*P sych that
|A— QBl|lro < ¢, where Q = H (/— vimv.

A BV L R

©

) JiLicH
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OVERLAP COMMUNICATION, COMPUTATION AND
RANDOM GENERATION

Queue 1 Queue 2 Queue 3
Create Q4
Vi «— AQq4 Create Q»
V1,T1<—QI’(V1) Vg(—AQg
Vo (I - WUT V1T) Vo | A+ (I - WU V1T)A Create Qg
Vo, To + qr( V2) V3 < AQ3
V3 < (/ - WT5 V2T) Vg | A« (I - VW1, VZT)A Create Q4
V3, T3 — qr( V3) V4 — AQ4

= More operations (explicit panel update) in favor of exposed parallelism.
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FUTURE WORK

m Experiments and results.

= How to deal with tensor parallelism?

= Other use cases for randomized rangefinder. G MR

® Relative vs. absolute stopping criterion?

® How do stability results translate to randomized setting? m>xn mx k kxn

® Two-sided projections? [
= Mix Gram-Schmidt and Householder?

= Cholesky QR Thank you for your

m QOther decompositions from Randomized Numerical Linear ; |
Algebra. atte nt|0n i

m Extend to higher dimensional tensors.

This work was funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) through the project OpenGPT-X (project no. 68GX21007D).
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