PHYSICAL REVIEW B 110, L180202 (2024)

Editors’ Suggestion

Optimization of ionic configurations in battery materials by quantum annealing

Tobias Binninger®,"?*" Yin-Ying Ting ©,"? Piotr M. Kowalski®,"? and Michael H. Eikerling ® "3
'Theory and Computation of Energy Materials (IET-3), Institute of Energy Technologies,
Forschungszentrum Jiilich GmbH, 52425 Jiilich, Germany
2Jiilich Aachen Research Alliance JARA Energy & Center for Simulation and Data Science (CSD), 52425 Jiilich, Germany
3Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering,
RWTH Aachen University, Intzestrasse 5, 52072 Aachen, Germany

® (Received 23 November 2023; revised 5 November 2024; accepted 12 November 2024; published 26 November 2024)

Energy materials with disorder in site occupation are challenging for computational studies due to an
exponential scaling of the configuration space. We herein present a grand-canonical optimization method that
enables the use of quantum annealing (QA) for sampling the ionic ground state. The method relies on a Legendre

transformation of the Coulomb energy cost function that strongly reduces the effective coupling strengths of the
fully connected problem, which is essential for effectiveness of QA. The approach is expected to be applicable

to a variety of materials optimization problems.
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Modeling of ionic arrangements in multielement com-
pounds represents a ubiquitous challenge for computational
research in energy materials. Materials with mixed or par-
tially occupied lattice sites are widely investigated, e.g., doped
semiconductors for photovoltaics [1-3], or intercalation ma-
terials and ionic conductors for Li-ion batteries (LIBs) [4-7].
While the configurational arrangement of elements impacts
computed thermodynamic [8,9], electronic [10], chemical
[11], and ionic-transport parameters [12,13], construction of
reliable models of occupation disorder represents a major
difficulty for simulations [14-19].

For a simulation cell comprising M sites, a fraction 6 of
which being occupied, the total number of possible configura-
tions is given by (using Stirling’s formula)

MY e —(1-6)yM
<0M> ~ 0771 —0) ™. ey
The exponential scaling of the configuration space with sys-
tem size (M) precludes an efficient sampling of all possible
configurations. For many computational problems, thermo-
dynamically relevant low(est)-energy configurations must be
computed to reliably predict materials properties. Finding
such ionic distributions requires efficient algorithms. Com-
mon approaches to this end include the methods of cluster
expansion [14,15,17,18,20] and special quasirandom struc-
tures [16,19]. Alternatively, computational workflows employ
stochastic Monte Carlo methods to identify a number of
candidate ground-state configurations [21,22]. The obtained
models are used for accurate and computationally intensive
simulations, usually based on density functional theory (DFT)
(e.g., [22]). For typical simulation cells of LIB materials,
containing less than a hundred intercalation sites, the total
number of ionic configurations is of the order of 10°~10'> and
the sampling of ionic configurations significantly contributes
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to the runtime of computational workflows. Efficient sampling
methods are thus needed to simulate the charging/discharging
characteristics of LIB cathodes.

Quantum computing (QC) techniques provide new ways of
solving exponentially scaling problems in materials science.
Among these, quantum annealing (QA), a type of adiabatic
quantum computing [23], is designed to solve classical opti-
mization problems, which can be mapped onto an Ising-type
Hamiltonian [24-26]. The underlying procedure consists of
adiabatically tuning an initial transverse-field Hamiltonian to
the target Hamiltonian, encoding the cost function of the
optimization problem. Then, the quantum state of the mul-
tiqubit system adiabatically converges to the ground state of
the target Hamiltonian, corresponding to the global minimum
of the cost function. With the emergence of commercially
available hardware, such as the QA devices by D-Wave Sys-
tems Inc., such methods should be tested and deployed in
materials science research. The efficiency of QA depends on
finding a suitable encoding of a given optimization problem
on the QA hardware [27,28]. Due to limited connectivity of
the qubit network topology, this is particularly challenging
for problems represented by a fully connected interaction
graph [29].

QA and QA-inspired approaches have been applied for
conformational sampling of polymer mixtures [30], crystal-
structure prediction [31], and materials design and optimiza-
tion [32-34]. Carnevali et al. [35] and Camino et al. [36]
employed D-Wave QA devices for optimizing the distribu-
tion of vacancies in a graphene sheet. In their approach,
each site i of the graphene lattice was represented by a bi-
nary site occupation variable x; € {0, 1}, indicating whether
the respective site is occupied or vacant. The energy cost
function accounted for the number of intact versus broken
chemical bonds. The limited number of chemical bonds per
atom resulted in a limited number of nonzero x;x; coupling
terms, which was beneficial for the mapping to the limited
connectivity of the D-Wave qubit network. Optimization of
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FIG. 1. Layered crystal structure of lithium cobalt oxide. The
ground-state configuration of the Coulomb energy model is shown,
with white and green spheres representing vacant and occupied Li
sites, respectively.

the bare energy model resulted in the complete occupation of
all sites. To tune the system to a certain number of vacancies,
aterm () ;x; — Nc¢)? was added to the cost function, penal-
izing states that deviate from the targeted atom number, N¢.
However, this penalty term produces nonzero couplings of all
pairs of variables, thus thwarting the sparse form of the bond
energy model.

Herein, we demonstrate the use of quantum annealing
for sampling the configurational ground state of ionic ma-
terials, employing the total Coulomb energy as a surrogate
energy model [21,22]. The long-range nature of Coulomb
interactions couples any pair of lattice sites. The resulting
full connectivity of the optimization problem is further ex-
acerbated by the penalty term for the target stoichiometry
constraint, making the problem extremely challenging for
present-day QA architectures. To overcome this difficulty, we
propose a grand-canonical optimization method employing a
Legendre-transformed energy cost function that significantly
alleviates the connectivity strength. The method renders the
configurational optimization of LIB materials feasible on ex-
isting D-Wave QA hardware and has general applicability
to similar problems in the research of disordered materials.
While we do not claim the QA method to outperform classi-
cal algorithms at the present stage, pronounced performance
gains of quantum computing methods are reasonable to expect
in the future.

We have chosen lithium cobalt oxide (LCO), a
standard cathode material for LIBs [37], as a test
case. During charging/discharging of LCO, Li ions are
extracted/intercalated according to the reaction

LiCoO, = Li;_,CoO, +yLi" +ye, 2)

resulting in the formation/filling of vacancies across the Li-
ion sublattice. We target to model the semi-lithiated state with
Lig5Co0O; stoichiometry. The model cell, shown in Fig. 1,
comprises 36 Li sites, half of which are occupied and half
are vacant. The problem consists of finding the ground-state
configuration among the ~10'° possible distributions of 18 Li
ions over 36 available sites. This task is sufficiently complex
for assessing the QA performance while being amenable for
benchmarking against a classical method, such as replica ex-
change Monte Carlo (REMC).

The electrostatic Coulomb energy,

2
e ZaZﬁ
Ecou = E , 3
coul 47'[60 |ra — rﬂ| ( )
a<p

is the cost function to be minimized. Here, the summation
goes over any pair of ions present in the lattice, Z, are
the respective valencies, and other constants have their usual
meaning. Standard valencies of Z;; = +1 and Zp = —2 have
been chosen for lithium cations and oxygen anions, respec-
tively, and Zc, = +3.5, which is the (average) valency of
cobalt cations in semi-lithiated LCO to provide overall charge
neutrality. The Coulomb model is a crude approximation
of the system’s energy, especially with respect to electronic
contributions. In reality, LCO reveals a complex interplay
between (de)lithiation and electronic structure [38]. For the
purpose of the present work, the Coulomb energy serves only
as a convenient surrogate model to study ionic configurational
optimization.

Assigning binary occupation variables x; to each of the Li
sites, indicating whether a given site is occupied (x; = 1) or
vacant (x; = 0), the Coulomb energy can be written in terms
of sums over all Li sites,

Ecou=const. + »_ Quixi+ Y Qijxxj. (4)
€Sy i<jeSL
Here, const. = ~“— 3 ZZ_ s the Coulomb interac-
’ . 4meq i<jefix [ri—r;]
tion energy among all fixed ions, i.e., cobalt cations and

2
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oxygen anions, and the coefficients Q;; = 7 > jefix Trr]

and Q; j = % ﬁ correspond to the Coulomb interaction
between a given Li site i and fixed species, and between
a given pair of Li sites, respectively. Due to the pairwise
character of Coulomb interactions, Eq. (4) has the form of
a quadratic unconstrained binary optimization (QUBO) prob-
lem, as required for present D-Wave QA devices.

Due to periodic boundary conditions (PBCs), each vari-
able x; represents a given Li site of the model cell plus all
of its periodic images. To ensure that long-range Coulomb
interactions are properly accounted for, we employed Ewald
summation routines available in the PYMATGEN library [39]
for Python in computing the QUBO coefficients Q; ; and Q; ;
under PBCs. The constant term was obtained as the Ewald
energy of the simulation cell with only fixed species present.
To determine Q; ;, simulation cells with only one occupied Li
site 7 and all fixed ion species were constructed. The respective
Ewald energies were corrected by subtracting the constant
term to avoid overcounting of the interaction energy among
fixed species. The coefficients Q; ; were obtained from the
Ewald energies of simulation cells with only Li ions on sites
i and j present (without any fixed ions). To avoid double
counting, the respective energies were corrected for the self-
energies of sites i and j, i.e., the interaction energy of Li ions
on a single given site and all of its periodic images (which is
already accounted for in the respective diagonal terms Q; ;).
We note that simulation cells comprising only a subset of ion
species are not charge balanced. The Ewald method automat-
ically adds a neutralizing homogeneous background charge to
prevent divergence of the electrostatic energy. However, due
to charge neutrality of the overall system, background charge
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TABLE I. Parameter tuning for sampling the ionic ground-state
configuration on a D-Wave Advantage™ system. For each set of pa-
rameters, 1000 independent annealing runs were performed with an
annealing time of 100 us each. A: strength of Li number constraint;
w: chemical potential; Ny ;: average Li number; o: chain strength; n,:
fraction of broken chains; E™": minimum value of Coulomb energy

coul *

for configurations with target stoichiometry.

A 1 NLi [of8 Te E:mﬂ
0 36 1 0.02%
0.5 349 1 49%
1.0 238 1 92%
1.0 24.3 5 0.03%
5.0 19.2 50 0.02% —4427.08 eV
0.2 —13.2eV 18.0 2 0.03% —4432.64 eV

contributions mutually get canceled and do not affect the total
Coulomb energy of Eq. (4). The obtained QUBO coefficients
for LCO were const. = —4212.68 eV, Q;; = —9.40 eV, and
—1.04eV < Q;; <2.02eVifori < j(Q;;=0fori> j).

We performed optimization of the obtained QUBO func-
tion using the D-Wave Advantage™ QA system. Due to
pairwise Coulomb interactions, the problem is fully con-
nected, and we thus employed the DWaveCliqueSampler()
routine from the D-Wave Ocean library. Minimization of the
bare Coulomb energy cost function resulted in x; = 1 for all
36 Li sites, i.e., complete occupation of the Li sublattice. Un-
like in classical sampling algorithms, the search space cannot
be restricted to the target stoichiometry in QA. To obtain the
semi-lithiated state with desired occupation of N[i** = 18
sites, the cost function must be modified to penalize config-
urations that violate the target stoichiometry. The standard
approach to enforce such constraint consists of adding a
penalty term [35,36],

(-

where Zixi = Ny;, also known as the Hamming weight of
the binary string, is the total number of Li ions for a given
configuration and A is a parameter controlling the strength of
the constraint. Sampling statistics obtained for different values
of A are shown in Table I. With increasing A, the average
Li number Nj; of the output configurations of 1000 indepen-
dent annealing runs decreased toward the desired value of
18, but at the same time the fraction of broken qubit chains
[40], n., increased to 92% for A = 1, rendering the solutions
unreliable. This could be prevented by concomitantly increas-
ing the chain strength parameter o.. For A = 5 and o, = 50,
we have achieved a negligible fraction of chain breaks and
obtained the target stoichiometry of N3 = 18 in 16% of
annealing runs. However, the respective minimum value of the
Coulomb energy of —4427.08 eV is significantly larger than
the minimum energy of —4432.64 eV obtained with classical
REMC sampling. The reason for the poor performance of the
QA method lies in the large value of A = 5 required for the
stoichiometry constraint, which adds a value of 21 = 10 to
the off-diagonal elements of the coefficient matrix, a factor of

2
- Nﬁfg“) : 5)

5-10 larger in magnitude than the off-diagonal contributions
resulting from the Coulomb energy. The stoichiometry con-
straint thus effectively masks the Coulomb energy terms and
renders the optimization inefficient.

To meet the Li target stoichiometry at much smaller bias
of the off-diagonal elements, we introduce a grand-canonical
optimization method. Figure 2(a) shows the average energy
of sampled configurations as a function of the average Li
number (blue curve with markers) [41]. A negative slope is
apparent, explaining (i) why minimization of the bare energy
resulted in complete lithiation and (ii) why a large quadratic
penalty A is required to enforce a minimum of the cost
function close to the target stoichiometry of 18. Within the
context of the Coulomb energy model, we interpret the local
slope at the target stoichiometry as the chemical potential,
w = 3Eou /0N, and rotate the energy curve by performing a
Legendre transformation from Coulomb energy to the grand-
canonical cost function E.oy — (Np;. Using the fitted value of
u = —13.38 eV [dashed line in Fig. 2(a)], the cost function
becomes flat around the target stoichiometry with a slightly
negative curvature [green curve in Fig. 2(a)] [42]. Then, the
quadratic penalty term of Eq. (5) with a small value of . = 0.2
is sufficient to bend the cost function upward and produce a
minimum at the target Li number [red curve in Fig. 2(a)]. We
note that the grand-canonical transformation only depends on
the total Li number and therefore does not interfere with the
energy optimization at the target stoichiometry. Moreover, be-
ing a linear transformation, it only shifts the diagonal elements
of the QUBO matrix by a constant —u, thus avoiding the
aforementioned problem of masking of off-diagonal elements.
The total cost function for grand-canonical optimization
thus reads

2

Ecoultil = Y xi+2[ D x =N, (6)

€Sy i€SL

where Eoul{x;}] is given by Eq. (4). Here, the objective still
consists of identifying the energetic ground state at a given
target stoichiometry, not to be confused with methods for
thermodynamic sampling [43].

Applying this method with a fine-tuned chemical po-
tential of u = —13.2 eV, we obtained significantly better
performance of the QA procedure; cf. Table 1. The target
stoichiometry of Np; = 18 was met in 55% of returned con-
figurations at a mild value of A = 0.2. Most importantly, the
minimum of returned Coulomb energies at the target stoi-
chiometry was Eggg} = —4432.64 eV, which is identical to
the minimum energy obtained from the benchmark REMC
sampling. The proposed grand-canonical method thus makes
the fully connected Coulomb energy model feasible for op-
timization by QA, which is the main result of the present
work. The respective ground-state configuration is shown in
Fig. 1. The row-like Li ordering is in agreement with previous
computational and experimental findings for semi-lithiated
LCO [43-45].

We finally performed a deeper analysis of the D-Wave
sampling statistics. Figure 2(b) presents a histogram of the
Coulomb energies returned from 400 000 annealing runs (only
using results with Np; = 18 and without any chain breaks).
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FIG. 2. (a) Average energy vs Li number for LCO as obtained from the bare Coulomb energy model of Eq. (4) (blue curve with markers),
after applying a Legendre transformation with 4 = —13.38 eV (green curve), and including the quadratic penalty term of Eq. (§) with A = 0.2
(red curve). (b) Histogram of Coulomb energies obtained from QA with the grand-canonical method (u = —13.2 eV and A = 0.2). Only
samples with N;; = 18 were counted. The energy is given vs the ground-state (GS) energy (E™" = —4432.64 eV); i.e., what is shown is the

coul —

difference E,,, — E™". The ionic configurational density of states (DOS) of the Coulomb energy model, determined by REMC sampling, is

coul*

shown for comparison (blue curve). (c) Ionic DOS, obtained from REMC sampling, in the energy range around the GS (blue: DOS curve with
thermal broadening, left-hand axis; gray bars in inset: DOS histogram, right-hand axis).

A broad distribution of energies is obtained, with most of
the samples being a few eV above the ground state (GS),
whereas the true minimum energy solution was returned in
only 0.083% of annealing runs. At first glance, this appears
to be a rather low optimization efficiency. However, the con-
figurational density of states (DOS) of the underlying model
must be analyzed for a fair assessment of the statistics [50].
The ionic DOS of the Coulomb energy model, Npos(E ), was
obtained from extended REMC sampling runs. It is shown
as a blue curve in Fig. 2(b), with close-ups around the GS
energy in Fig. 2(c). The essential structure of the QA sam-
pling histogram [golden bars in Fig. 2(b)] reflects the shape
of the underlying DOS. Assuming that each configuration is
sampled with a certain “intrinsic” probability, p(E), that only
depends on the respective energy, the overall sampling rate,
N(E), is proportional to p(E) times the number of states with
energy E, i.e., the configurational DOS,

N(E) o p(E) Npos(E). (N

To extract p(E), we normalized the QA sampling histogram
with the configurational DOS. The result is shown in Fig. 3(a).
A monotonically decreasing probability as a function of
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FIG. 3. (a) Intrinsic sampling probability (per energy), p(E),
obtained by dividing the overall sampling rate by the configu-
rational DOS. Orange fitted curve: Boltzmann-type exponential
exp(—E /kT). Inset: Same on a logarithmic scale. (b) Comparison
of the Coulomb energy vs DFT energy for 100 different ionic
configurations of semi-lithiated LCO. DFT method: Calculations
performed with Quantum Espresso software package [46]; ultrasoft
pseudopotentials [47] with GGA-PBEsol [48] exchange-correlation
functional; DFT+U method with Hubbard parameter U = 4.6 eV
for cobalt [49]; cutoff energy of 50 Ry for plane-wave basis set;
3 x 4 x 2 k-point mesh.

energy is obtained, clearly indicating that the lower energy
configurations are sampled with higher probability, with the
ground-state configuration having the highest sampling prob-
ability. The obtained p(E) curve is well reproduced by a
Boltzmann-type exponential, exp(—E /kT ), with a fitted value
of kT = 0.31 eV (orange curve). Such QA statistics have been
observed previously [50-52] and explained by statistical im-
perfections in tuning the target Hamiltonian [50]. We note that
the effective sampling temperature depends on the problem
at hand and is not related to the physical temperature of the
hardware [51].

At first glance, our fitted value of k7 = 0.31 eV indicates
“hot” sampling of the configurational space. However, the
effective temperature scales with the energy scale of the prob-
lem. The Coulomb energy of Eq. (4) represents a hard energy
model, because it neglects dielectric screening. Including the
latter in the form of a dielectric constant, €,, scales down all
energies, and thus the effective sampling temperature. To esti-
mate €,, we have computed the DFT energies of 100 randomly
selected ionic configurations. Figure 3(b) reveals a linear
correlation between the Coulomb and corresponding DFT
energies, which demonstrates the physical meaningfulness of
the ionic Coulomb energy model for LCO. Since DFT ener-
gies implicitly include the effect of electronic screening, we
interpret the slope of the plot in Fig. 3(b) as an effective dielec-
tric constant, €, = 12, which reduces the effective sampling
temperature to k7T /e, = 0.026 €V, i.e., room temperature.

In summary, we have presented here an efficient grand-
canonical optimization method, which renders quantum
annealing feasible for sampling the ionic ground state based
on a fully interacting Coulomb energy model. The method
has been demonstrated on a D-Wave Advantage™ quantum
annealer to successfully identify the lowest energy arrange-
ment of lithium ions in lithium cobalt oxide. Boltzmann-type
output statistics were observed with the highest sampling
probability for the ground-state configuration. We consider
the grand-canonical optimization method to be of more gen-
eral applicability to the solution of materials optimization
problems by quantum computing.

The authors gratefully acknowledge the Jiilich Supercom-
puting Centre [54] for funding this project by providing
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computing time on the D-Wave Advantage™ System JUPSI
through the Jiilich UNified Infrastructure for Quantum com-
puting (JUNIQ) within the project qdisk. DFT simulations
were performed on the JURECA machine in the scope of the

project cjiek61. The presented work was carried out within
the framework of the Helmholtz Association’s program Ma-
terials and Technologies for the Energy Transition, Topic 2:
Electrochemical Energy Storage.
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