001     1034076
005     20250203103316.0
037 _ _ |a FZJ-2024-06897
041 _ _ |a English
100 1 _ |a Frielinghaus, Henrich
|0 P:(DE-Juel1)130646
|b 0
|u fzj
111 2 _ |a MLZ User Meeting 2024
|c Munich
|d 2024-12-05 - 2024-12-06
|w Germany
245 _ _ |a Structure and dynamics of a quasi-binary liquid in 2 and 3 dimensions
260 _ _ |c 2024
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1735821742_31059
|2 PUB:(DE-HGF)
|x Outreach
520 _ _ |a We investigated a quasi-binary liquid of 3-methyl pyridine and heavy water at the critical composition at different temperatures close to the phase transition. When adding antagonistic salt sodium tetraphenylborate the ions form locally lamellar structures that enclose the binary fluid. Then the system becomes 2-dimensional. Looking at the critical fluctuations, the dimensionality is confirmed. The dynamics of the 3 and 2-dimensional system displays diffusion on large length scales (dynamic light scattering) and fluctuations of the boundaries between the domains on small length scales (neutron spin echo spectroscopy). From that we obtain a master curve following the theory of Kawasaki. On the one hand the critical exponent is obtained that can be rationalized by theoretical concepts. The overall prefactor of the master curve displays approx. 2 times faster diffusion for the 2-dimensional compared to the 3-dimensional system. This can be explained by much lower viscosities (also measured) of the 2-dimensional system. This is theoretically explained by the lubrication effect.Looking at the high- scattering, we determined the critical correlation-function exponent that is extraordinarily large for the 2-dimensional system. It seems that the composition fluctuations in the 2 dimensions and the 3rd dimension are orientationally averaged.A short excursion will also look on an aerogel as porous material that interferes with the binary fluid.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 1
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 1 7 |a Polymers, Soft Nano Particles and Proteins
|0 V:(DE-MLZ)GC-1602-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
909 C O |o oai:juser.fz-juelich.de:1034076
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130646
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 1
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 2
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21